Il NUMERO della FILA è il coefficiente di α (diminuito di 1) nel testo dell'esercizio n° 2.

Fila 1

- 1. f_n converge puntualmente (ma non uniformemente) in $[0, +\infty[$ a f con $f(x) \equiv 1/2$; converge uniformemente in ogni intervallo [0, b] con b > 0.
- **2.** raggio $+\infty$ se $\alpha < \frac{1}{2}$, 1 se $\alpha = \frac{1}{2}$, 0 se $\alpha > \frac{1}{2}$. Se $\alpha = \frac{1}{2}$, converge in x = -1, diverge in x = 1.
- 3. Converge banalmente in $x = \frac{\pi}{2}$; poiché la serie è a termini positivi, usando, ad esempio, il criterio della radice asintotico, converge puntualmente nel resto dell'intervallo, eccetto x = 0, dove diverge positivamente. Converge totalmente in $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$, poiché $\left|\frac{(\cos x)^n}{n+2+e^{\cos x}}\right| = \frac{(\cos x)^n}{n+2+e^{\cos x}} \le (\cos x)^n \le (\frac{1}{2})^n$ e $\sum_{n=1}^{+\infty} (\frac{1}{2})^n$ è una serie (geometrica) convergente. In $x = \pi$ converge per il criterio di Leibniz.
- 4. $a_0 = 1/2$, $a_1 = 1/4$, $b_1 = -\frac{1}{\pi}$. Converge puntualmente (ma non uniformemente) in tutto \mathbb{R} ; $S(4\pi) = 1/2$, $S(\frac{5}{2}\pi) = 0$, $S(3\pi) = 0$.

Fila 2

- 1. f_n converge puntualmente (ma non uniformemente) in $[0, +\infty[$ a f con $f(x) \equiv 1/3$; converge uniformemente in ogni intervallo [0, b] con b > 0.
- **2.** raggio $+\infty$ se $\alpha < \frac{1}{3}$, 1 se $\alpha = \frac{1}{3}$, 0 se $\alpha > \frac{1}{3}$. Se $\alpha = \frac{1}{3}$, converge in x = -1, diverge in x = 1.
- 3. Converge banalmente in $x = \frac{\pi}{2}$; poiché la serie è a termini positivi, usando, ad esempio, il criterio della radice asintotico, converge puntualmente nel resto dell'intervallo, eccetto x = 0, dove diverge positivamente. Converge totalmente in $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$, poiché $\left|\frac{(\cos x)^n}{n+3+e^{\cos x}}\right| = \frac{(\cos x)^n}{n+3+e^{\cos x}} \le (\cos x)^n \le (\frac{1}{2})^n$ e $\sum_{n=1}^{+\infty} (\frac{1}{2})^n$ è una serie (geometrica) convergente. In $x = \pi$ converge per il criterio di Leibniz.
- 4. $a_0 = 1/4$, $a_1 = 1/8$, $b_1 = -\frac{1}{2\pi}$. Converge puntualmente (ma non uniformemente) in tutto \mathbb{R} ; $S(8\pi) = 1/4$, $S(\frac{5}{2}\pi) = 0$, $S(5\pi) = 0$.

Fila 3

- 1. f_n converge puntualmente (ma non uniformemente) in $[0, +\infty[$ a f con $f(x) \equiv 1/4$; converge uniformemente in ogni intervallo [0, b] con b > 0.
- **2.** raggio $+\infty$ se $\alpha < \frac{1}{4}$, 1 se $\alpha = \frac{1}{4}$, 0 se $\alpha > \frac{1}{4}$. Se $\alpha = \frac{1}{4}$, converge in x = -1, diverge in x = 1.
- 3. Converge banalmente in $x=\frac{\pi}{2}$; poiché la serie è a termini positivi, usando , ad esempio, il criterio della radice asintotico, converge puntualmente nel resto dell'intervallo, eccetto x=0, dove diverge positivamente. Converge totalmente in $\left[\frac{\pi}{3},\frac{\pi}{2}\right]$, poiché $\left|\frac{(\cos x)^n}{n+4+e^{\cos x}}\right|=\frac{(\cos x)^n}{n+4+e^{\cos x}}\leq (\cos x)^n\leq (\frac{1}{2})^n$ e $\sum_{n=1}^{+\infty}(\frac{1}{2})^n$ è una serie (geometrica) convergente. In $x=\pi$ converge per il criterio di Leibniz.
- **4.** $a_0 = 1/6, \ a_1 = 1/12, \ b_1 = -\frac{1}{3\pi}$. Converge puntualmente (ma non uniformemente) in tutto \mathbb{R} ; $S(12\pi) = 1/6, \ S(\frac{5}{2}\pi) = 0, \ S(7\pi) = 0.$