Il numero del compito è dato dall'intero sottratto ad α nell'esercizio 1.

COMPITO 1

- 1. f è continua in (0,0) per $\alpha < 4$; $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$ per ogni $\alpha \in \mathbb{R}$. f è differenziabile in (0,0) se solo se $\alpha < \frac{7}{2}$.
- 2. m = -8 assunto in (0, -2) e M = 10 assunto in (3, 1).
- 3.5π
- 4. $\frac{\pi}{2}$
- 5. $\{f_n\}$ converge puntualmente (ma non uniformemente) in $I = [0, +\infty[$ a f con f(x) = 0 se x > 0 e f(0) = 1/4. Converge uniformemente in ogni insieme $[a, +\infty[$ (con a > 0).
- 6. R = 0 se $\alpha > 1$, $R = \infty$ se $\alpha < 1$; R = 1, se $\alpha = 1$, converge in x = 1 (mediante il criterio di Leibniz) e diverge in x = -1 (quindi convergenza uniforme in [-M, 1] con 0 < M < 1) per il teorema di Abel) e la somma è $\log(1 + x) x$
- 7. $a_0 = 4\pi$, $a_n = 0$ per ogni $n \in \mathbb{Z}^+$, $b_n = (-1)^{n+1} \frac{4}{n}$. Non converge uniformemente in tutto \mathbb{R} perché è discontinua; converge puntualmente in tutto \mathbb{R} perché è continua a tratti. $S(2\pi) = 2\pi$, $S(3\pi) = 2\pi$.
- 8. $f(t,y) = \log(1+y^2) + \arctan(\log(1+y^2))$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità globali; u=0 soluzione stazionaria; se $y_0 \neq 0$, soluzione u crescente. Se $y_0 < 0$, la soluzione u è concava; se $y_0 > 0$, u è convessa. Se $y_0 < 0$, $\lim_{t \to +\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to +\infty$; se $y_0 > 0$, $\lim_{t \to -\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to -\infty$.

COMPITO 2

- 1. f è continua in (0,0) per $\alpha < 5$; $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$ per ogni $\alpha \in \mathbb{R}$. f è differenziabile in (0,0) se solo se $\alpha < \frac{9}{2}$.
- 2. m = -12 assunto in (0, -3) e M = 15 assunto in (27/4, 3/2).
- 3. 10π
- 4. $\frac{\pi}{2}$
- 5. $\{f_n\}$ converge puntualmente (ma non uniformemente) in $I = [0, +\infty[$ a f con f(x) = 0 se x > 0 e f(0) = 1/6. Converge uniformemente in ogni insieme $[a, +\infty[$ (con a > 0).
- 6. R = 0 se $\alpha > 2$, $R = \infty$ se $\alpha < 2$; R = 1, se $\alpha = 2$, converge in x = 1 (mediante il criterio di Leibniz) e diverge in x = -1 (quindi convergenza uniforme in [-M, 1] con 0 < M < 1) per il teorema di Abel) e la somma è $\log(1 + x) x$
- 7. $a_0 = 6\pi$, $a_n = 0$ per ogni $n \in \mathbb{Z}^+$, $b_n = (-1)^{n+1} \frac{6}{n}$. Non converge uniformemente in tutto \mathbb{R} perché è discontinua; converge puntualmente in tutto \mathbb{R} perché è continua a tratti. $S(4\pi) = 3\pi$, $S(5\pi) = 3\pi$.
- 8. $f(t,y) = \log(1+y^2) + \arctan(\log(1+y^2))$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità globali; u=0 soluzione stazionaria; se $y_0 \neq 0$, soluzione u crescente. Se $y_0 < 0$, la soluzione u è concava; se $y_0 > 0$, u è convessa. Se $y_0 < 0$, $\lim_{t \to +\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to +\infty$; se $y_0 > 0$, $\lim_{t \to -\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to -\infty$.

COMPITO 3

- 1. f è continua in (0,0) per $\alpha < 6$; $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$ per ogni $\alpha \in \mathbb{R}$. f è differenziabile in (0,0) se solo se $\alpha < \frac{11}{2}$.
- 2. m = -16 assunto in (0, -4) e M = 20 assunto in (12, 2).
- 3. 17π
- 4. $\frac{\pi}{2}$
- 5. $\{f_n\}$ converge puntualmente (ma non uniformemente) in $I = [0, +\infty[$ a f con f(x) = 0 se x > 0 e f(0) = 1/8. Converge uniformemente in ogni insieme $[a, +\infty[$ (con a > 0).
- 6. R = 0 se $\alpha > 3$, $R = \infty$ se $\alpha < 3$; R = 1, se $\alpha = 3$, converge in x = 1 (mediante il criterio di Leibniz) e diverge in x = -1 (quindi convergenza uniforme in [-M, 1] con 0 < M < 1) per il teorema di Abel) e la somma è $\log(1 + x) x$
- 7. $a_0 = 8\pi$, $a_n = 0$ per ogni $n \in \mathbb{Z}^+$, $b_n = (-1)^{n+1} \frac{8}{n}$. Non converge uniformemente in tutto \mathbb{R} perché è discontinua; converge puntualmente in tutto \mathbb{R} perché è continua a tratti. $S(6\pi) = 4\pi$, $S(7\pi) = 4\pi$.
- 8. $f(t,y) = \log(1+y^2) + \arctan(\log(1+y^2))$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità globali; u=0 soluzione stazionaria; se $y_0 \neq 0$, soluzione u crescente. Se $y_0 < 0$, la soluzione u è concava; se $y_0 > 0$, u è convessa. Se $y_0 < 0$, $\lim_{t \to +\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to +\infty$; se $y_0 > 0$, $\lim_{t \to -\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to -\infty$.