	3.5	
Analisi	Matematica	А

Cognome e nome

Firma

Corso di Laurea:

 \Diamond GESL; \Diamond INFL

Istruzioni.

- 1. COMPILARE la parte precedente queste istruzioni, in particolare, scrivere cognome e nome (in stampatello), firmare e segnare il proprio corso di laurea.
 - 2. SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
 - 3. I PUNTEGGI attribuiti per la risposta esatta sono indicati alla fine di ogni quesito.
 - 4. PROIBITO usare libri, quaderni, calcolatori, telefoni cellulari.
 - 5. CONSEGNARE questo foglio e tutti i fogli di protocollo.
 - 6. TENERE il foglio B come promemoria delle risposte date.
 - 7. TEMPO a disposizione: 160 min.
- 1. Determinare inf A, sup A ed eventualmente min A, max A, essendo $A = \left\{ (-1)^{n+1} e^{(-1)^n \frac{8n^2 + 8}{n^2}}, \ n \in \mathbf{Z}^+ \right\}$.

Risposta [punti 3]:

2. Il numero complesso $\left[\frac{4}{\sqrt{3}-i} + \frac{2}{2i}\right](i-1)^4$ vale

Risposta [punti 3]:

3. Determinare il luogo geometrico degli $z \in \mathbb{C}$ tali che $e^{7\text{Re}z} + |z + 7i|^2 = |e^{7z}| + [\text{Im}(iz + z\overline{z})]^2$

Risposta [punti 3]:

4. Calcolare il limite della successione $\lim_{n\to+\infty} \left(\frac{n^2+2n+\log n}{n^2+3n-1}\right)^{7n}$

Risposta [punti 3]:

5. Calcolare il limite della successione $\lim_{n\to+\infty} \frac{7(n+\log n)^{\alpha-1}+\arctan(n!)+2}{n^2+2\sqrt{n}+\cos n^n}\sin\frac{3}{n}$ al variare di $\alpha\in\mathbf{R}$

Risposta [punti 3]:

6. Sia f la funzione reale di variabile reale definita da $f(x) = \sqrt[3]{\frac{x^4}{x+1}}$.

Determinare il dominio di f ed eventuali simmetrie.

Risposta [punti 1]:

Determinare eventuali asintoti (verticali, orizzontali, obliqui) per f.

Risposta [punti 2]:

Calcolare la funzione derivata prima di f . Risposta [punti 1]:
Studiare la crescenza e decrescenza di f , calcolando, qualora esistano, punti di massimo/minimo relativo e punti comassimo/minimo assoluto per f . Risposta [punti 1]:
Calcolare la funzione derivata seconda di f e studiare la concavità e la convessità di f , calcolando, qualora esistano punti di flesso per f . Risposta [punti 1]:
7. Calcolare il limite $\lim_{x\to 0}\frac{x^2[\log(1+x+3x^2)-x]}{3(\sinh x^2-\sin^2 x)}$
Risposta [punti 3]:
8. Sia $f: \mathbf{R} \longrightarrow \mathbf{R}$ la funzione definita da
$f(x) = \begin{cases} (x-2)\sin\frac{\pi}{x-1} + \frac{1-\cos(x-2)}{2(x-2)^2} & \text{se } x \neq 1 \text{ e } x \neq 2\\ \frac{1}{4} & \text{se } x = 1 \text{ o } 2. \end{cases}$
Discutere la continuità di f sul suo dominio.
Risposta [punti 3]:
9. Sia $f: \mathbf{R} \longrightarrow \mathbf{R}$ la funzione definita da $f(x) = \cos\left(\frac{\pi}{2}x\right) x-3 $ Discutere la derivabilità di f sul suo dominio.
Risposta [punti 3]:
RICHIESTE PER LA PROVA ORALE:

1. Determinare $\inf A$, $\sup A$ ed even	entualmente $\min A$, \max	A , essendo $A = \left\{ \right.$	$(-1)^{n+1}e^{(-1)^n\frac{8n^2+n^2}{n^2}}$	$\frac{8}{n}$, $n \in \mathbf{Z}^+$	
• • • • • • • • • • • • • • • • • • • •					
Risposta [punti 3]:					

2. Il numero complesso $\left[\frac{4}{\sqrt{3}-i} + \frac{2}{2i}\right](i-1)^4$ vale

Risposta [punti 3]:

3. Determinare il luogo geometrico degli $z \in \mathbf{C}$ tali che $e^{7\text{Re}z} + |z + 7i|^2 = |e^{7z}| + [\text{Im}(iz + z\overline{z})]^2$

Risposta [punti 3]:

4. Calcolare il limite della successione $\lim_{n\to+\infty} \left(\frac{n^2+2n+\log n}{n^2+3n-1}\right)^{7n}$

Risposta [punti 3]:

5. Calcolare il limite della successione $\lim_{n\to+\infty} \frac{7(n+\log n)^{\alpha-1}+\arctan(n!)+2}{n^2+2\sqrt{n}+\cos n^n}\sin\frac{3}{n}$ al variare di $\alpha\in\mathbf{R}$.

Risposta [punti 3]:

6. Sia f la funzione reale di variabile reale definita da $f(x) = \sqrt[3]{\frac{x^4}{x+1}}$.

Determinare il dominio di f ed eventuali simmetrie.

Risposta [punti 1]:

Determinare eventuali asintoti (verticali, orizzontali, obliqui) per f.

Risposta [punti 2]:

Calcolare la funzione derivata prima di f.

Risposta [punti 1]:

Studiare la crescenza e decrescenza di f, calcolando, qualora esistano, punti di massimo/minimo relativo e punti di massimo/minimo assoluto per f.

Risposta [punti 1]:

Calcolare la funzione derivata seconda di f e studiare la concavità e la punti di flesso per f . Risposta [punti 1]:	convessità di f , calcolando, qualora esistano
7. Calcolare il limite $\lim_{x\to 0}\frac{x^2[\log(1+x+3x^2)-x]}{3(\sinh x^2-\sin^2 x)}$	x]
Risposta [punti 3]:	
8. Sia $f: \mathbf{R} \longrightarrow \mathbf{R}$ la funzione definita da	
$f(x) = \begin{cases} (x-2)\sin\frac{\pi}{x-1} + \frac{1-\cos(x-2)}{2(x-2)^2} \\ \frac{1}{4} \end{cases}$	se $x \neq 1$ e $x \neq 2$ se $x = 1$ o 2.
Discutere la continuità di f sul suo dominio.	
Risposta [punti 3]:	
9. Sia $f: \mathbf{R} \longrightarrow \mathbf{R}$ la funzione definita da $f(x) = \cos\left(\frac{\pi}{2}x\right) x-3 $ Discutere la derivabilità di f sul suo dominio.	
Risposta [punti 3]:	