Cognome e nome	Fir	ma		ricola	
Corso di Laurea: \Diamond AUTL; \Diamond AME	$BL; \Leftrightarrow CIVL;$	\diamondsuit GESL;	\Diamond MATL;	\Diamond MECL	\Diamond INFL.
1. COMPILARE la parte precedente quest					stampatel
lo), firmare, indicare il numero di					1
2. SCRIVERE, in modo incontrovertibile, barrare la risposta errata e scrivere acc	_	_	o dopo ogni que	esito; in caso o	di correzione
3. I PUNTEGGI attribuiti per la risposta	esatta sono indi	cati alla fine d	li ogni quesito.		
4. PROIBITO usare libri, quaderni, calco					
5. CONSEGNARE il foglio A e tutti i					
6. TENERE il foglio B come promemoria	delle risposte dat	te.			
7. TEMPO a disposizione: 150 min.					
1. Calcolare l'insieme delle primitive	e della funzion	e $f:[0,\pi/2]$	$] o\mathbb{R}$ data d	la	
	f(x) — si	$n x \cos x$			
	$f(x) = \frac{\sin^2 x}{\sin^2 x}$	$+3\sin x + 3\sin x$	$\overline{2}$		
Risposta [4 punti]:					
2. Si determini la soluzione $y(x)$ del	_				
	$y' + 2(\cos x)y$	$= 3\sin x \cos x$	sx		
tale che $y(0) = 0$.					
Risposta [3 punti]:					
-					
3. Sia $\alpha > 0$, e sia	()		1 1		
f	$(x,y) = \begin{cases} 2x \\ y - x \end{cases}$	se $y \geq 7a$	$\alpha x $		
	(y-z)	c altrimen	ti.		
Sia $\gamma: [-1,1] \to \mathbb{R}^2$ data da $\gamma(t)$	$=(t,t^2)$, e sia	$g(t) = f(\gamma($	t)). Calcolar	e $g'(0)$ al va	ariare di α .
Risposta [4 punti].	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • •	
Risposta [4 punti]:					

Determinare i punti stazionari della funzione $f(x,y) = e^{x^4 - y^2}$ e classificarli.
Risposta [Determinazione dei punti stazionari 1 punto, classificazione 2 punti]:
Si consideri la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da $f(x,y) = xe^{x+2y}$ e il dominio T dato dal triangolo chiuso di vertici $A = (0,0), B = (1,0)$ e $C = (0,2)$. Detti $m = \min_T f$ e $M = \max_T f$ determinare m, M e i punti in cui essi vengono assunti.
Risposta [Punti di minimo e valore minimo 2 punti, punti di massimo e valore massimo 2 punti]:
Data la curva $\gamma(t) = \frac{2}{3} \left(\frac{1}{t} - t^2 \right) \vec{i} + \left(-\ln t + \frac{4}{\pi} \cos \left(\frac{\pi}{2} t \right) \right) \vec{j}$
con $\frac{1}{2} \le t \le 7$, determinare l'equazione della retta tangente a γ nel punto $(0,0)$.
Risposta [4 punti]:
Calcolare l'integrale curviline o $\int_{\gamma} \sqrt{y^2-1}ds$ dove γ è la curva $\gamma(t)=(t,\cosh t)$ co n $-2\leq t\leq 2$
Risposta [4 punti]:
Sia $f: \mathbb{R}^2 \to \mathbb{R}$ data da $f(x,y) = \begin{cases} x-2y & \text{se } y \ge -x \\ 2x & \text{se } y < -x \end{cases}$
e sia R il rettangolo di vertici $A=(1,5), B=(2,5), C=(2,-10), D=(1,-10).$ Calcolare $\frac{1}{25}\iint_R f(x,y)dxdy$
Risposta [4 punti]:
Tusposta [1 panti].

1. Calcolare l'insieme delle primitive della funzione $f:[0,\pi/2]\to\mathbb{R}$ data da

$$f(x) = \frac{\sin x \cos x}{\sin^2 x + 3\sin x + 2}$$

.....

Risposta [4 punti]:

2. Si determini la soluzione y(x) dell'equazione differenziale

$$y' + 2(\cos x)y = 3\sin x \cos x$$

tale che y(0) = 0.

.....

Risposta [3 punti]:

3. Sia $\alpha > 0$, e sia

$$f(x,y) = \begin{cases} 2x & \text{se } y \ge 7\alpha |x| \\ y - x & \text{altrimenti.} \end{cases}$$

Sia $\gamma:[-1,1]\to\mathbb{R}^2$ data da $\gamma(t)=(t,t^2)$, e sia $g(t)=f(\gamma(t))$. Calcolare g'(0) al variare di α .

.....

Risposta [4 punti]:

4. Determinare i punti stazionari della funzione $f(x,y) = e^{x^4 - y^2}$ e classificarli.

.....

Risposta [Determinazione dei punti stazionari 1 punto, classificazione 2 punti]:

5. Si consideri la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da $f(x,y) = xe^{x+2y}$ e il dominio T dato dal triangolo chiuso di vertici A = (0,0), B = (1,0) e C = (0,2). Detti $m = \min_T f$ e $M = \max_T f$, determinare m, M e i punti in cui essi vengono assunti.

.....

Risposta	[Punti d	i minimo	\mathbf{e}	valore	minimo	2	punti,	punti	\mathbf{di}	massimo	\mathbf{e}	valore
massimo	2 punti]:											

	_	_	
c	Doto	la curva	
() .	1/4.64	ia cui va	

$$\gamma(t) = \frac{2}{3} \left(\frac{1}{t} - t^2 \right) \vec{i} + \left(-\ln t + \frac{4}{\pi} \cos \left(\frac{\pi}{2} t \right) \right) \vec{j}$$

con $\frac{1}{2} \le t \le 7$, determinare l'equazione della retta tangente a γ nel punto (0,0).

.....

Risposta [4 punti]:

7. Calcolare l'integrale curviline
o $\int_{\gamma} \sqrt{y^2-1}\,ds$ dove γ è la curva $\gamma(t)=(t,\cosh t)$ con
 $-2\leq t\leq 2.$

Risposta [4 punti]:

8. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ data da

$$f(x,y) = \begin{cases} x - 2y & \text{se } y \ge -x \\ 2x & \text{se } y < -x \end{cases}$$

e sia R il rettangolo di vertici A=(1,5), B=(2,5), C=(2,-10), D=(1,-10). Calcolare

$$\frac{1}{25} \iint_R f(x,y) \, dx dy$$

.....

Risposta [4 punti]: