Cogn	ome e nome	e		Firma		Matricola		
Corse	o di Studi:	\Diamond AUTLM	♦ MECLT	\Diamond MECL	\Diamond AUTLS	\Diamond MATLS	\Diamond MECLS	
2. 3. 4. 5.	COMPILAR: patello), fir SCRIVERE, barrare la ris I PUNTEGG PROIBITO TO CONSEGNA TENERE il f	mare, indicare	il numero di riportibile, la risportibile, la risporta esatta risposta esatta rni, calcolatori. e tutti i fogli comemoria delle r	natricola e s osta nello spar nuova rispost sono indicati li protocollo	egnare il prop zio lasciato dopo a. alla fine di ogni	rio corso di la ogni quesito; in	nome (in stam- urea. caso di correzione,	
1.	Calcolare il volume del solido $V=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2\leq z\leq 4y-1\}.$							
	Risposta [4 punti]:							
2.	Calcolare il flusso del campo vettoriale $\vec{F}(x,y,z) = \frac{1}{1+y^2} \vec{i} + \frac{1}{1+x^2} \vec{j} + \frac{1}{1+z^2} \vec{k}$ attraverso la porzione di superficie cilindrica $\vec{r}(u,v) = \sqrt{3}\cos u\vec{i} + \sqrt{3}\sin u\vec{j} + v\vec{k}, 0 \le u \le \frac{\pi}{2}, -7 \le v \le 14.$							
	Risposta [4 punti]:							
3.	determini l		convergenza p	untuale e la	funzione lim		$\arctan x^{2n+1}$. Si a la convergenza	
	Risposta [4 punti]:							
4.		i la serie di fu a puntuale e d				1]. Determin	nare l'insieme di	
	Risposta	[4 punti]:						

5.	Si consideri la funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$, di periodo 2π , definita in $(-\pi, \pi]$ da $f(x) = \pi \sin x + 1$ e prolungata per periodicità. Sia $S(x) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + b_n \sin(nx)$ la sua serie di Fourier; si discuta la convergenza puntuale ed uniforme di S in \mathbb{R} . Si calcolino a_0, a_1, a_2 .
	Risposta [4 punti]:
6.	Determinare la soluzione del problema di Cauchy $y''-y'=3e^{2t}\cos e^t$, $y(\log\frac{\pi}{2})=0$, $y'(\log\frac{\pi}{2})=\frac{3}{2}\pi$. (Suggerimento: porre $z(t)=y'(t)\ldots$).
	Risposta [4 punti]:
7.	Si consideri il problema di Cauchy
	$\begin{cases} y' = \arctan rac{y^2 - 49}{y^2 + 49}, \ y(0) = y_0. \end{cases}$
	Si determini, al variare di $y_0 \in \mathbb{R}$, se il problema ammette esistenza ed unicità localmente e globalmente e le eventuali soluzioni stazionarie. Si studi poi monotonia, asintoti, convessità della soluzione al variare di $y_0 \in \mathbb{R}$.
	Risposta [5 punti]:
8.	Calcolare l'area della regione del piano individuata dall'arcata di cicloide di equazioni parametriche $\vec{r}(t) = (t - \sin t)\vec{i} + (1 - \cos t)\vec{j}$, $0 \le t \le 2\pi$ e il segmento dell'asse x con $0 \le x \le 2\pi$ (suggerimento: usare il teorema di Green e tenere presente il verso di percorrenza antiorario).
	Risposta [3 punti]:

1.	Calcolare il volume del solido $V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 4y - 1\}.$				
	Risposta [4 punti]:				
2.	Calcolare il flusso del campo vettoriale $\vec{F}(x,y,z)=\frac{1}{1+y^2}\vec{i}+\frac{1}{1+x^2}\vec{j}+\frac{1}{1+z^2}\vec{k}$ attraverso la porzione di superficie cilindrica $\vec{r}(u,v)=\sqrt{3}\cos u\vec{i}+\sqrt{3}\sin u\vec{j}+v\vec{k},0\leq u\leq \frac{\pi}{2},-7\leq v\leq 14.$ Risposta [4 punti]:				
3.	Si consideri la successione di funzioni $\{f_n\}$ così definita in \mathbb{R} : $f_n(x) = 3x^{2n} \arctan x^{2n+1}$. Si determini l'insieme I di convergenza puntuale e la funzione limite. Si discuta la convergenza uniforme in I ed eventualmente nei suoi sottoinsiemi.				
	Risposta [4 punti]:				
4.	Si consideri la serie di funzioni $\sum_{n=1}^{+\infty} \left(7x + \frac{\arcsin x}{n}\right)^n$, $x \in [0,1]$. Determinare l'insieme di convergenza puntuale e discutere la convergenza totale. Risposta [4 punti]:				
5.	Si consideri la funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$, di periodo 2π , definita in $(-\pi, \pi]$ da $f(x) = \pi \sin x + 1$ e prolungata per periodicità. Sia $S(x) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + b_n \sin(nx)$ la sua serie di				
	Fourier; si discuta la convergenza puntuale ed uniforme di S in \mathbb{R} . Si calcolino a_0, a_1, a_2 . Risposta [4 punti]:				
6.	Determinare la soluzione del problema di Cauchy $y''-y'=3e^{2t}\cos e^t$, $y(\log\frac{\pi}{2})=0$, $y'(\log\frac{\pi}{2})=\frac{3}{2}\pi$. (Suggerimento: porre $z(t)=y'(t)\ldots$). Risposta [4 punti]:				

7.	Si consideri il problema di Cauchy
	$\begin{cases} y' = \arctan \frac{y^2 - 49}{y^2 + 49}, \\ y(0) = y_0. \end{cases}$
	Si determini, al variare di $y_0 \in \mathbb{R}$, se il problema ammette esistenza ed unicità localmente e globalmente e le eventuali soluzioni stazionarie. Si studi poi monotonia, asintoti, convessità della soluzione al variare di $y_0 \in \mathbb{R}$.
	Risposta [5 punti]:
8.	Calcolare l'area della regione del piano individuata dall'arcata di cicloide di equazioni para metriche $\vec{r}(t) = (t - \sin t)\vec{i} + (1 - \cos t)\vec{j}$, $0 \le t \le 2\pi$ e il segmento dell'asse x con $0 \le x \le 2\pi$ (suggerimento: usare il teorema di Green e tenere presente il verso di percorrenza antiorario).
	Risposta [3 punti]: