Complementi di 2	Analisi	MATEMATICA	-	Analisi	MATEMATICA	\mathbf{C}
FOCLIO A						

28 giugno 2011

Corso di Studi: \Diamond AUTLM \Diamond MECLM/MECLT \Diamond AUTLS/MATLS/MECLS \Diamond AMBLS/CIVLS

Istruzioni

- 1. COMPILARE la parte precedente queste istruzioni, in particolare, scrivere cognome e nome (in stampatello), firmare, indicare il numero di matricola e segnare il proprio corso di laurea.
- 2. SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. I PUNTEGGI attribuiti per la risposta esatta sono indicati alla fine di ogni quesito.
- 4. PROIBITO usare libri, quaderni, calcolatori.
- 5. CONSEGNARE il foglio A e tutti i fogli di protocollo.
- 6. TENERE il foglio B come promemoria delle risposte date.
- 7. TEMPO a disposizione: 150 min.

1.	Calcolare l'integrale triplo ∫	$\int \int_V z^2 dx dy dz$ dove $V = \{(x, y, z) \in \mathbb{R}^3 \}$	$0 \le z \le \frac{x^2}{9} + 49y^2, \frac{x^2}{9} +$
	$49y^2 \le 1\}$		v

.....

Risposta [4 punti]:

2. Calcolare l'integrale di superficie $\iint_S \frac{1}{4}\sqrt{x+y+1}\,dS$, dove $S=\{(x,y,z)\in\mathbb{R}^3\ z=\frac{2}{3}(x^{3/2}+y^{3/2}),x\geq 0\,,y\geq 0\,,x+y\leq 2\}.$

.....

Risposta [4 punti]:

3. Si consideri la successione di funzioni $\{f_n\}_{n\in\mathbb{Z}^+}$ così definita in $[0,+\infty[$:

$$f_n(x) = \frac{x^n - 2}{x^n + 2}$$

Si determini il limite puntuale f. Si discuta la convergenza uniforme in tutto $[0, +\infty[$ e nei suoi sottoinsiemi.

.....

Risposta [4 punti]:

	Calcolare i coefficienti $\{a_n\}$ $n \in \mathbb{N}$ e $\{b_n\}$ $n \in \mathbb{Z}^+$. Risposta [4 punti]:
	Sia $f: \mathbb{R} \longrightarrow \mathbb{R}$ la funzione definita nell'esercizio precedente. Sia $S(x) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + b_n \sin(nx)$ la sua serie di Fourier; si discuta la convergenza puntuale ed uniforme di S in \mathbb{R} sulla base delle caratteristiche di f . Si calcolino $S(2\pi)$, $S(3\pi)$, e la somma della serie $\sum_{n=1}^{+\infty} \frac{4}{n^2}$. Risposta [4 punti]:
7.	Determinare la soluzione del problema di Cauchy $y'=49(t+y)^2$, $y(0)=\frac{1}{7}$.
	Determinare la soluzione del problema di Cauchy $y'=49(t+y)^2$, $y(0)=\frac{1}{7}$. Risposta [4 punti]:

4. Sia $\alpha \in \mathbb{R}.$ Si consideri la seguente serie di potenze

1.	Calcolare l'integrale triplo $\iiint_V z$	$dxdydz$ dove $V = \{(x, y, z) \in \mathbb{R}^3$	$0 \le z \le \frac{x^2}{9} + 49y^2, \frac{x^2}{9} +$
	$49y^2 \le 1\}$		3

.....

Risposta [4 punti]:

2. Calcolare l'integrale di superficie
$$\iint_S \frac{1}{4} \sqrt{x+y+1} \, dS$$
, dove $S = \{(x,y,z) \in \mathbb{R}^3 \ z = \frac{2}{3} (x^{3/2} + y^{3/2}), x \ge 0, y \ge 0, x+y \le 2\}$.

.....

Risposta [4 punti]:

3. Si consideri la successione di funzioni $\{f_n\}_{n\in\mathbb{Z}^+}$ così definita in $[0,+\infty[$:

$$f_n(x) = \frac{x^n - 2}{x^n + 2}$$

Si determini il limite puntuale f. Si discuta la convergenza uniforme in tutto $[0, +\infty[$ e nei suoi sottoinsiemi.

.....

Risposta [4 punti]:

4. Sia $\alpha \in \mathbb{R}$. Si consideri la seguente serie di potenze

$$\sum_{n=1}^{+\infty} (-1)^n \frac{7^{n+1}(x-1)^{n+1}}{n^{\alpha}+1}, \qquad x \in \mathbb{R}.$$

Si calcoli il raggio di convergenza al variare di $\alpha \in \mathbb{R}$ e, nei casi in cui è finito, si studi anche la convergenza sul bordo. Calcolare la somma della serie nel caso $\alpha = 1$.

.....

Risposta [4 punti]:

Calcolare i coefficienti $\{a_n\}$ $n \in \mathbb{N}$ e $\{b_n\}$ $n \in \mathbb{Z}^+$. Risposta [4 punti]:
rusposia [1 panii].
Sia $f: \mathbb{R} \longrightarrow \mathbb{R}$ la funzione definita nell'esercizio precedente. Sia $S(x) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + b_n \sin(nx)$ la sua serie di Fourier; si discuta la convergenza puntuale ed uniforme di S in \mathbb{R} sulla base delle caratteristiche di f . Si calcolino $S(2\pi)$, $S(3\pi)$, e la somma della serie $\sum_{n=1}^{+\infty} \frac{4}{n^2}$.
Risposta [4 punti]:
Determinare la soluzione del problema di Cauchy $y'=49(t+y)^2$, $y(0)=\frac{1}{7}$.
Risposta [4 punti]:
Si consideri il problema di Cauchy $y' = t^3(e^{\sin y} - 1)$, $y(0) = y_0$. Si determini, al variare di $y_0 \in \mathbb{R}$, se il problema ammette esistenza ed unicità localmente e globalmente e le eventuali soluzioni stazionarie. Determinare le eventuali simmetrie delle soluzioni (pari/dispari). Si studi poi monotonia, asintoti della soluzione al variare di $y_0 \in]0, 2\pi[$.