ANALISI MATEMATICA 1 11 gennaio 2012 - Allievi INFLT - ETELT - AUTLT - MATLT - MECLT - MECMLT

Il NUMERO della FILA è contenuto nel testo dell'esercizio 4 ed è la costante che compare al denominatore del primo fattore del termine generale della serie.

Fila 1

1. $dom f =]0, +\infty[$, non ci sono simmetrie.

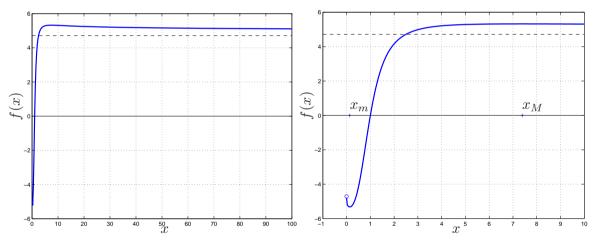
 $\lim_{x\to 0^+} f(x) = -\frac{3}{2}\pi$, $\lim_{x\to +\infty} f(x) = \frac{3}{2}\pi$, $y = \frac{3}{2}\pi$ asintoto orizzontale, non ammette né asintoti verticali, né asintoti obliqui.

La derivata prima è

$$f'(x) = 2\frac{4 - \log^2 x}{x(1 + \log^2 x)^2}$$
 dom $f' = \text{dom } f$.

f è crescente in $]e^{-2}, e^2[$ e decrescente in $]0, e^{-2}[\cup]e^2, +\infty[$; $x=e^{-2}$ è punto di minimo assoluto; $x=e^2$ è punto di massimo assoluto. f è limitata.

Dallo studio della derivata prima è evidente che ci deve essere un punto di flesso in $]e^{-2}, e^2[$, mentre la presenza di un punto di massimo ed il comportamento per $x \to +\infty$ implicano che ci deve essere un altro punto di flesso in $]e^2, +\infty[$.



- 2. L'unica soluzione è $7(\frac{i}{2} \frac{\sqrt{3}}{2})$.
- 3. Il limite vale $\ell = 0$ se $\alpha < 2$, $\ell = 49$ se $\alpha = 2$, $\ell = +\infty$ se $\alpha > 2$
- 4. La serie è a termini positivi e converge. Si può dimostrare, ad esempio, con il criterio della radice
- 5. $\beta \le 1/7$
- **6.** L'integrale vale $\frac{2}{\sqrt{2}}[\arctan 2 \frac{\pi}{4}]$
- 7. $y(x) = (1 + \cos^2 x)^2$

1. $\operatorname{dom} f =]0, +\infty[$, non ci sono simmetrie.

 $\lim_{x\to 0^+} f(x) = -4\pi$, $\lim_{x\to +\infty} f(x) = 4\pi$, $y = 4\pi$ asintoto orizzontale, non ammette né asintoti verticali, né asintoti obliqui.

La derivata prima è

$$f'(x) = 2\frac{9 - \log^2 x}{x(1 + \log^2 x)^2}$$
 dom $f' = \text{dom } f$.

f è crescente in $]e^{-3}, e^3[$ e decrescente in $]0, e^{-3}[\cup]e^3, +\infty[$; $x = e^{-3}$ è punto di minimo assoluto; $x = e^3$ è punto di massimo assoluto. f è limitata.

Dallo studio della derivata prima è evidente che ci deve essere un punto di flesso in $]e^{-3}, e^{3}[$, mentre la presenza di un punto di massimo ed il comportamento per $x \to +\infty$ implicano che ci deve essere un altro punto di flesso in $]e^{3}, +\infty[$.

- 2. L'unica soluzione è $6(\frac{i}{2} \frac{\sqrt{3}}{2})$.
- 3. Il limite vale $\ell = 0$ se $\alpha < 3$, $\ell = 36$ se $\alpha = 3$, $\ell = +\infty$ se $\alpha > 3$
- 4. La serie è a termini positivi e converge. Si può dimostrare, ad esempio, con il criterio della radice
- 5. $\beta \le 1/6$
- **6.** L'integrale vale $\frac{2}{\sqrt{5}}[\arctan 2 \frac{\pi}{4}]$
- 7. $y(x) = (1 + \cos^2 x)^3$

Fila 3

1. dom $f =]0, +\infty[$, non ci sono simmetrie.

 $\lim_{x\to 0^+} f(x) = -\frac{15}{2}\pi$, $\lim_{x\to +\infty} f(x) = \frac{15}{2}\pi$, $y = \frac{15}{2}\pi$ asintoto orizzontale, non ammette né asintoti verticali, né asintoti obliqui.

La derivata prima è

$$f'(x) = 2\frac{16 - \log^2 x}{x(1 + \log^2 x)^2}$$
 dom $f' = \text{dom } f$.

f è crescente in $]e^{-4}, e^4[$ e decrescente in $]0, e^{-4}[\cup]e^4, +\infty[$; $x=e^{-4}$ è punto di minimo assoluto; $x=e^4$ è punto di massimo assoluto. f è limitata.

Dallo studio della derivata prima è evidente che ci deve essere un punto di flesso in $]e^{-4}, e^{4}[$, mentre la presenza di un punto di massimo ed il comportamento per $x \to +\infty$ implicano che ci deve essere un altro punto di flesso in $]e^{4}, +\infty[$.

- 2. L'unica soluzione è $5(\frac{i}{2} \frac{\sqrt{3}}{2})$.
- 3. Il limite vale $\ell = 0$ se $\alpha < 4$, $\ell = 25$ se $\alpha = 4$, $\ell = +\infty$ se $\alpha > 4$
- 4. La serie è a termini positivi e converge. Si può dimostrare, ad esempio, con il criterio della radice
- 5. $\beta \leq 1/5$
- **6.** L'integrale vale $\frac{2}{\sqrt{10}}[\arctan 2 \frac{\pi}{4}]$

7.
$$y(x) = (1 + \cos^2 x)^4$$

Fila 4

1. $dom f =]0, +\infty[$, non ci sono simmetrie.

 $\lim_{x\to 0^+} f(x) = -12\pi$, $\lim_{x\to +\infty} f(x) = 12\pi$, $y=12\pi$ asintoto orizzontale, non ammette né asintoti verticali, né asintoti obliqui.

La derivata prima è

$$f'(x) = 2\frac{25 - \log^2 x}{x(1 + \log^2 x)^2}$$
 dom $f' = \text{dom } f$.

f è crescente in $]e^{-5}, e^{5}[$ e decrescente in $]0, e^{-5}[\cup]e^{5}, +\infty[$; $x=e^{-5}$ è punto di minimo assoluto; $x=e^{5}$ è punto di massimo assoluto. f è limitata.

Dallo studio della derivata prima è evidente che ci deve essere un punto di flesso in $]e^{-5}, e^{5}[$, mentre la presenza di un punto di massimo ed il comportamento per $x \to +\infty$ implicano che ci deve essere un altro punto di flesso in $]e^{5}, +\infty[$.

- 2. L'unica soluzione è $4(\frac{i}{2} \frac{\sqrt{3}}{2})$.
- 3. Il limite vale $\ell = 0$ se $\alpha < 5$, $\ell = 16$ se $\alpha = 5$, $\ell = +\infty$ se $\alpha > 5$
- 4. La serie è a termini positivi e converge. Si può dimostrare, ad esempio, con il criterio della radice
- 5. $\beta \leq 1/4$
- **6.** L'integrale vale $\frac{2}{\sqrt{17}}[\arctan 2 \frac{\pi}{4}]$
- 7. $y(x) = (1 + \cos^2 x)^5$

Fila 5

1. $dom f =]0, +\infty[$, non ci sono simmetrie.

 $\lim_{x\to 0^+} f(x) = -\frac{35}{2}\pi$, $\lim_{x\to +\infty} f(x) = \frac{35}{2}\pi$, $y = \frac{35}{2}\pi$ asintoto orizzontale, non ammette né asintoti verticali, né asintoti obliqui.

La derivata prima è

$$f'(x) = 2\frac{36 - \log^2 x}{x(1 + \log^2 x)^2}$$
 dom $f' = \text{dom } f$.

f è crescente in $]e^{-6}, e^{6}[$ e decrescente in $]0, e^{-6}[\cup]e^{6}, +\infty[$; $x=e^{-6}$ è punto di minimo assoluto; $x=e^{6}$ è punto di massimo assoluto. f è limitata.

Dallo studio della derivata prima è evidente che ci deve essere un punto di flesso in $]e^{-6}, e^{6}[$, mentre la presenza di un punto di massimo ed il comportamento per $x \to +\infty$ implicano che ci deve essere un altro punto di flesso in $]e^{6}, +\infty[$.

- 2. L'unica soluzione è $3(\frac{i}{2} \frac{\sqrt{3}}{2})$.
- 3. Il limite vale $\ell = 0$ se $\alpha < 6$, $\ell = 9$ se $\alpha = 6$, $\ell = +\infty$ se $\alpha > 6$

- 4. La serie è a termini positivi e converge. Si può dimostrare, ad esempio, con il criterio della radice
- 5. $\beta \le 1/3$
- **6.** L'integrale vale $\frac{2}{\sqrt{26}}[\arctan 2 \frac{\pi}{4}]$
- 7. $y(x) = (1 + \cos^2 x)^6$

Fila 6

1. $dom f =]0, +\infty[$, non ci sono simmetrie.

 $\lim_{x\to 0^+} f(x) = -24\pi$, $\lim_{x\to +\infty} f(x) = 24\pi$, $y=24\pi$ asintoto orizzontale, non ammette né asintoti verticali, né asintoti obliqui.

La derivata prima è

$$f'(x) = 2\frac{49 - \log^2 x}{x(1 + \log^2 x)^2}$$
 dom $f' = \text{dom } f$.

f è crescente in $]e^{-7}, e^{7}[$ e decrescente in $]0, e^{-7}[\cup]e^{7}, +\infty[$; $x=e^{-7}$ è punto di minimo assoluto; $x=e^{7}$ è punto di massimo assoluto. f è limitata.

Dallo studio della derivata prima è evidente che ci deve essere un punto di flesso in $]e^{-7}, e^{7}[$, mentre la presenza di un punto di massimo ed il comportamento per $x \to +\infty$ implicano che ci deve essere un altro punto di flesso in $]e^{7}, +\infty[$.

- **2.** L'unica soluzione è $2(\frac{i}{2} \frac{\sqrt{3}}{2})$.
- 3. Il limite vale $\ell=0$ se $\alpha<7,\,\ell=4$ se $\alpha=7,\,\ell=+\infty$ se $\alpha>7$
- 4. La serie è a termini positivi e converge. Si può dimostrare, ad esempio, con il criterio della radice
- 5. $\beta \le 1/2$
- **6.** L'integrale vale $\frac{2}{\sqrt{37}}[\arctan 2 \frac{\pi}{4}]$
- 7. $y(x) = (1 + \cos^2 x)^7$