ANALISI MATEMATICA 1 - 11 giugno 2012 - Allievi INFLT - ETELT - AUTLT - MATLT - MECLT - MECMLT

Il NUMERO della FILA è contenuto nel testo dell'esercizio 7 ed è il numero intero precedente al coefficiente di y'.

Fila 1

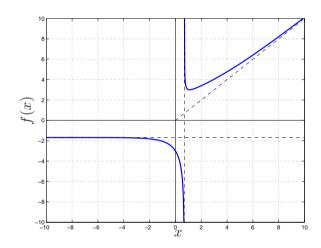
1. $dom f = \mathbb{R} \setminus \{\log 2\}$, non ci sono simmetrie.

 $\lim_{x\to\log 2^{\pm}}f(x)=\pm\infty, \ x=\log 2$ asintoto verticale, $\lim_{x\to-\infty}f(x)=\log 2-\frac{3}{\sqrt[3]{2}}, \ y=\log 2-\frac{3}{\sqrt[3]{2}}$ asintoto orizzontale, $\lim_{x\to+\infty}f(x)=+\infty, \ y=x$ asintoto obliquo per $x\to+\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 2} \left[1 - \frac{1}{\sqrt[3]{e^x - 2}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 3, +\infty[$, decrescente altrove; $x=\log 3$ è punto di minimo relativo; f è illimitata.



- 2. La retta y=0 unita con la circonferenza $7(x^2+y^2)=1$.
- 3. Il limite vale $\ell = -2$
- 4. $\alpha < 2/3$
- 5. La primitiva è $F(x) = \frac{1}{2} \left[2 \arctan(\sqrt{2x-1}) \frac{\pi}{2} \right]$; e $\lim_{x \to +\infty} F(x) = \frac{\pi}{4}$
- **6.** L'integrale converge per $-2 < \beta < 0$
- 7. $y(x) = \frac{1}{2} \left[\frac{1}{2} + \frac{e^{-2x}}{2} + x \right]$.

Fila 2

1. $\operatorname{dom} f = \mathbb{R} \setminus \{\log 3\}$, non ci sono simmetrie. $\lim_{x \to \log 3^{\pm}} f(x) = \pm \infty$, $x = \log 3$ asintoto verticale, $\lim_{x \to -\infty} f(x) = \log 3 - \frac{3}{\sqrt[3]{3}}$, $y = \log 3 - \frac{3}{\sqrt[3]{3}}$ asintoto orizzontale, $\lim_{x \to +\infty} f(x) = +\infty$, y = x asintoto obliquo per $x \to +\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 3} \left[1 - \frac{1}{\sqrt[3]{e^x - 3}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 4, +\infty[$, decrescente altrove; $x = \log 4$ è punto di minimo relativo; f è illimitata.

- **2.** La retta y = 0 unita con la circonferenza $6(x^2 + y^2) = 1$.
- 3. Il limite vale $\ell = -3$
- 4. $\alpha < 2/5$
- **5.** La primitiva è $F(x) = \frac{1}{3} \left[2 \arctan(\sqrt{2x-1}) \frac{\pi}{2} \right]$; e $\lim_{x \to +\infty} F(x) = \frac{\pi}{6}$
- **6.** L'integrale converge per $-4 < \beta < 0$
- 7. $y(x) = \frac{1}{3} \left[\frac{2}{3} + \frac{e^{-3x}}{3} + x \right]$.

Fila 3

1. $dom f = \mathbb{R} \setminus \{\log 4\}$, non ci sono simmetrie.

 $\lim_{x\to \log 4^{\pm}} f(x) = \pm \infty$, $x = \log 4$ as into to verticale, $\lim_{x\to -\infty} f(x) = \log 4 - \frac{3}{\sqrt[3]{4}}$, $y = \log 4 - \frac{3}{\sqrt[3]{4}}$ as into to orizzontale, $\lim_{x\to +\infty} f(x) = +\infty$, y = x as into to obliquo per $x\to +\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 4} \left[1 - \frac{1}{\sqrt[3]{e^x - 4}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 5, +\infty[$, decrescente altrove; $x=\log 5$ è punto di minimo relativo; f è illimitata.

- 2. La retta y = 0 unita con la circonferenza $5(x^2 + y^2) = 1$.
- 3. Il limite vale $\ell = -4$
- 4. $\alpha < 2/7$
- 5. La primitiva è $F(x) = \frac{1}{4} \left[2 \arctan(\sqrt{2x-1}) \frac{\pi}{2} \right]$; e $\lim_{x \to +\infty} F(x) = \frac{\pi}{8}$
- **6.** L'integrale converge per $-6 < \beta < 0$
- 7. $y(x) = \frac{1}{4} \left[\frac{3}{4} + \frac{e^{-4x}}{4} + x \right]$.

Fila 4

1. $dom f = \mathbb{R} \setminus \{\log 5\}$, non ci sono simmetrie.

 $\lim_{x\to \log 5^{\pm}} f(x) = \pm \infty$, $x = \log 5$ as intoto verticale, $\lim_{x\to -\infty} f(x) = \log 5 - \frac{3}{\sqrt[3]{5}}$, $y = \log 5 - \frac{3}{\sqrt[3]{5}}$ as intoto orizzontale, $\lim_{x\to +\infty} f(x) = +\infty$, y = x as intoto obliquo per $x\to +\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 5} \left[1 - \frac{1}{\sqrt[3]{e^x - 5}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 6, +\infty[$, decrescente altrove; $x=\log 6$ è punto di minimo relativo; f è illimitata.

- 2. La retta y = 0 unita con la circonferenza $4(x^2 + y^2) = 1$.
- 3. Il limite vale $\ell = -5$
- 4. $\alpha < 2/9$
- **5.** La primitiva è $F(x) = \frac{1}{5} \left[2 \arctan(\sqrt{2x-1}) \frac{\pi}{2} \right]$; e $\lim_{x \to +\infty} F(x) = \frac{\pi}{10}$
- **6.** L'integrale converge per $-8 < \beta < 0$
- 7. $y(x) = \frac{1}{5} \left[\frac{4}{5} + \frac{e^{-5x}}{5} + x \right].$

Fila 5

1. $dom f = \mathbb{R} \setminus \{\log 6\}$, non ci sono simmetrie.

 $\lim_{x\to \log 6^{\pm}} f(x) = \pm \infty$, $x = \log 6$ asintoto verticale, $\lim_{x\to -\infty} f(x) = \log 6 - \frac{3}{\sqrt[3]{6}}$, $y = \log 6 - \frac{3}{\sqrt[3]{6}}$ asintoto orizzontale, $\lim_{x\to +\infty} f(x) = +\infty$, y = x asintoto obliquo per $x\to +\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 6} \left[1 - \frac{1}{\sqrt[3]{e^x - 6}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 7, +\infty[$, decrescente altrove; $x=\log 7$ è punto di minimo relativo; f è illimitata.

- 2. La retta y=0 unita con la circonferenza $3(x^2+y^2)=1$.
- 3. Il limite vale $\ell = -6$
- 4. $\alpha < 2/11$
- **5.** La primitiva è $F(x) = \frac{1}{6} \left[2 \arctan(\sqrt{2x-1}) \frac{\pi}{2} \right]$; e $\lim_{x \to +\infty} F(x) = \frac{\pi}{12}$
- **6.** L'integrale converge per $-10 < \beta < 0$
- 7. $y(x) = \frac{1}{6} \left[\frac{5}{6} + \frac{e^{-6x}}{6} + x \right].$

Fila 6

1. $dom f = \mathbb{R} \setminus \{\log 7\}$, non ci sono simmetrie.

 $\lim_{x\to \log 7^{\pm}} f(x) = \pm \infty$, $x = \log 7$ as intoto verticale, $\lim_{x\to -\infty} f(x) = \log 7 - \frac{3}{\sqrt[3]{7}}$, $y = \log 7 - \frac{3}{\sqrt[3]{7}}$ as intoto orizzontale, $\lim_{x\to +\infty} f(x) = +\infty$, y = x as intoto obliquo per $x\to +\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 7} \left[1 - \frac{1}{\sqrt[3]{e^x - 7}} \right], \quad \text{dom } f' = \text{dom } f.$$

f è crescente in $]\log 8, +\infty[$, decrescente altrove; $x=\log 8$ è punto di minimo relativo; f è illimitata.

- 2. La retta y = 0 unita con la circonferenza $2(x^2 + y^2) = 1$.
- 3. Il limite vale $\ell = -7$

4. $\alpha < 2/13$

5. La primitiva è $F(x) = \frac{1}{7} \left[2 \arctan(\sqrt{2x-1}) - \frac{\pi}{2} \right]$; e $\lim_{x \to +\infty} F(x) = \frac{\pi}{14}$

6. L'integrale converge per $-12 < \beta < 0$

7. $y(x) = \frac{1}{7} \left[\frac{6}{7} + \frac{e^{-7x}}{7} + x \right].$