Il NUMERO della FILA è contenuto nel testo dell'esercizio 5 ed è il valore del punto in cui si deve discutere la continuità della funzione.

Fila 1

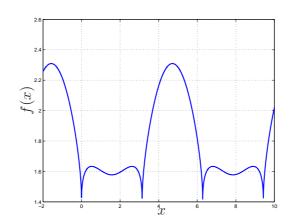
- 1. dom $f = \mathbb{R}$, non ci sono simmetrie; f è periodica di periodo 2π .
 - $\lim_{x\to\pm\infty} f(x) = \text{non esiste, non ci sono asintoti.}$

_

$$f'(x) = \cos x \left[-\frac{1}{2\sqrt{2 - \sin x}} + \frac{1}{2\sqrt{3}\sqrt{|\sin x|}} \frac{|\sin x|}{\sin x} \right],$$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}, x = k\pi \text{ sono punti di cuspide.}$

- Limitatamente all'intervallo $[0,2\pi]$: f è crescente in $]0,\frac{\pi}{6}[,]\frac{\pi}{2},\frac{5}{6}\pi[,]\pi,\frac{3}{2}\pi[$. $x=\frac{\pi}{6},\frac{5}{6}\pi$ punti di massimo relativo stazionari, $x=\frac{3}{2}\pi$ punto di massimo assoluto stazionario. $x=\frac{\pi}{2}$ punto di minimo relativo stazionario, $x=0, x=\pi$ e $x=\pi$ punti di minimo assoluto singolari (cuspidi).



- **2.** $z_0 = \sqrt[4]{3}(\frac{\sqrt{3}}{2} + \frac{i}{2}), z_1 = \sqrt[4]{3}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), z_2 = \sqrt[4]{3}(-\frac{\sqrt{3}}{2} \frac{i}{2}), z_3 = \sqrt[4]{3}(\frac{1}{2} \frac{\sqrt{3}}{2}i).$
- 3. $\ell = +\infty$ se $\alpha > -1$; $\ell = \frac{1}{2}$ se $\alpha = -1$; $\ell = 0$ se $\alpha < -1$.
- 4. $\sup A = 2$
- 5. x = 1 è un punto di discontinuità eliminabile.
- 6. l'integrale vale $3(\frac{\pi}{4} \frac{1}{2}\log 2)$
- 7. $\tilde{y}(x) = \frac{3}{2}x^2e^{-x} + \pi e^{-x}$

Fila 2

- 1. dom $f = \mathbb{R}$, non ci sono simmetrie; f è periodica di periodo 2π .
 - $\lim_{x\to\pm\infty} f(x)$ = non esiste, non ci sono asintoti.

 $f'(x) = \cos x \left[-\frac{1}{2\sqrt{3 - \sin x}} + \frac{1}{2\sqrt{5}\sqrt{|\sin x|}} \frac{|\sin x|}{\sin x} \right],$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}, x = k\pi \text{ sono punti di cuspide.}$

- Limitatamente all'intervallo $[0,2\pi]$: f è crescente in $]0,\frac{\pi}{6}[,]\frac{\pi}{2},\frac{5}{6}\pi[,]\pi,\frac{3}{2}\pi[$. $x=\frac{\pi}{6},\frac{5}{6}\pi$ punti di massimo relativo stazionari, $x=\frac{3}{2}\pi$ punto di massimo assoluto stazionario. $x=\frac{\pi}{2}$ punto di minimo relativo stazionario, $x=0, x=\pi$ e $x=\pi$ punti di minimo assoluto singolari (cuspidi).
- **2.** $z_0 = \sqrt[4]{5}(\frac{\sqrt{3}}{2} + \frac{i}{2}), z_1 = \sqrt[4]{5}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), z_2 = \sqrt[4]{5}(-\frac{\sqrt{3}}{2} \frac{i}{2}), z_3 = \sqrt[4]{5}(\frac{1}{2} \frac{\sqrt{3}}{2}i).$
- **3.** $\ell = +\infty$ se $\alpha > -1$; $\ell = \frac{1}{3}$ se $\alpha = -1$; $\ell = 0$ se $\alpha < -1$.
- 4. $\sup A = 4$
- 5. x = 2 è un punto di discontinuità eliminabile.
- 6. l'integrale vale $5(\frac{\pi}{4} \frac{1}{2}\log 2)$
- 7. $\tilde{y}(x) = \frac{5}{2}x^2e^{-x} + \pi e^{-x}$

Fila 3

- 1. dom $f = \mathbb{R}$, non ci sono simmetrie; f è periodica di periodo 2π .
 - $\lim_{x\to\pm\infty} f(x) = \text{non esiste, non ci sono asintoti.}$

$$f'(x) = \cos x \left[-\frac{1}{2\sqrt{4 - \sin x}} + \frac{1}{2\sqrt{7}\sqrt{|\sin x|}} \frac{|\sin x|}{\sin x} \right],$$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}, x = k\pi \text{ sono punti di cuspide.}$

- Limitatamente all'intervallo $[0, 2\pi]$: f è crescente in $]0, \frac{\pi}{6}[,]\frac{\pi}{2}, \frac{5}{6}\pi[,]\pi, \frac{3}{2}\pi[$. $x = \frac{\pi}{6}, \frac{5}{6}\pi$ punti di massimo relativo stazionari, $x = \frac{3}{2}\pi$ punto di massimo assoluto stazionario. $x = \frac{\pi}{2}$ punto di minimo relativo stazionario, $x = 0, x = \pi$ e $x = \pi$ punti di minimo assoluto singolari (cuspidi).
- **2.** $z_0 = \sqrt[4]{7}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ z_1 = \sqrt[4]{7}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), \ z_2 = \sqrt[4]{7}(-\frac{\sqrt{3}}{2} \frac{i}{2}), \ z_3 = \sqrt[4]{7}(\frac{1}{2} \frac{\sqrt{3}}{2}i).$
- **3.** $\ell = +\infty$ se $\alpha > -1$; $\ell = \frac{1}{4}$ se $\alpha = -1$; $\ell = 0$ se $\alpha < -1$.
- 4. $\sup A = 6$
- 5. x=3 è un punto di discontinuità eliminabile.
- 6. l'integrale vale $7(\frac{\pi}{4} \frac{1}{2}\log 2)$

7.
$$\tilde{y}(x) = \frac{7}{2}x^2e^{-x} + \pi e^{-x}$$

Fila 4

 $\operatorname{dom} f = \mathbb{R}$, non ci sono simmetrie; f è periodica di periodo 2π .

- $\lim_{x\to\pm\infty} f(x) = \text{non esiste, non ci sono asintoti.}$

$$f'(x) = \cos x \left[-\frac{1}{2\sqrt{5 - \sin x}} + \frac{1}{2\sqrt{9}\sqrt{|\sin x|}} \frac{|\sin x|}{\sin x} \right],$$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}, x = k\pi \text{ sono punti di cuspide.}$

- Limitatamente all'intervallo $[0,2\pi]$: f è crescente in $]0,\frac{\pi}{6}[,]\frac{\pi}{2},\frac{5}{6}\pi[,]\pi,\frac{3}{2}\pi[$.

 $x = \frac{\pi}{6}, \frac{5}{6}\pi$ punti di massimo relativo stazionari, $x = \frac{3}{2}\pi$ punto di massimo assoluto stazionario. $x = \frac{\pi}{2}$ punto di minimo relativo stazionario, $x = 0, x = \pi$ e $x = \pi$ punti di minimo assoluto singolari (cuspidi)

2.
$$z_0 = \sqrt[4]{9}(\frac{\sqrt{3}}{2} + \frac{i}{2}), z_1 = \sqrt[4]{9}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), z_2 = \sqrt[4]{9}(-\frac{\sqrt{3}}{2} - \frac{i}{2}), z_3 = \sqrt[4]{9}(\frac{1}{2} - \frac{\sqrt{3}}{2}i).$$

3.
$$\ell = +\infty$$
 se $\alpha > -1$; $\ell = \frac{1}{5}$ se $\alpha = -1$; $\ell = 0$ se $\alpha < -1$.

4.
$$\sup A = 8$$

5.
$$x = 4$$
 è un punto di discontinuità eliminabile.

6. l'integrale vale
$$9(\frac{\pi}{4} - \frac{1}{2}\log 2)$$

7.
$$\tilde{y}(x) = \frac{9}{2}x^2e^{-x} + \pi e^{-x}$$

Fila 5

- $\operatorname{dom} f = \mathbb{R}$, non ci sono simmetrie; f è periodica di periodo 2π .
 - $\lim_{x\to\pm\infty} f(x) = \text{non esiste, non ci sono asintoti.}$

$$f'(x) = \cos x \left[-\frac{1}{2\sqrt{6 - \sin x}} + \frac{1}{2\sqrt{11}\sqrt{|\sin x|}} \frac{|\sin x|}{\sin x} \right],$$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}, \ x = k\pi \text{ sono punti di cuspide.}$

- Limitatamente all'intervallo $[0,2\pi]$: f è crescente in $]0,\frac{\pi}{6}[,]\frac{\pi}{2},\frac{5}{6}\pi[,]\pi,\frac{3}{2}\pi[$. $x=\frac{\pi}{6},\frac{5}{6}\pi$ punti di massimo relativo stazionari, $x=\frac{3}{2}\pi$ punto di massimo assoluto stazionario. $x=\frac{\pi}{2}$ punto di minimo relativo stazionario, $x=0, x=\pi$ e $x=\pi$ punti di minimo assoluto

2.
$$z_0 = \sqrt[4]{11}(\frac{\sqrt{3}}{2} + \frac{i}{2}), \ z_1 = \sqrt[4]{11}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), \ z_2 = \sqrt[4]{11}(-\frac{\sqrt{3}}{2} - \frac{i}{2}), \ z_3 = \sqrt[4]{11}(\frac{1}{2} - \frac{\sqrt{3}}{2}i).$$

3.
$$\ell = +\infty$$
 se $\alpha > -1$; $\ell = \frac{1}{6}$ se $\alpha = -1$; $\ell = 0$ se $\alpha < -1$.

4.
$$\sup A = 10$$

x = 5 è un punto di discontinuità eliminabile.

- 6. l'integrale vale $11(\frac{\pi}{4} \frac{1}{2}\log 2)$
- 7. $\tilde{y}(x) = \frac{11}{2}x^2e^{-x} + \pi e^{-x}$

Fila 6

- 1. dom $f = \mathbb{R}$, non ci sono simmetrie; f è periodica di periodo 2π .
 - $\lim_{x\to\pm\infty} f(x) = \text{non esiste, non ci sono asintoti.}$

-

$$f'(x) = \cos x \left[-\frac{1}{2\sqrt{7 - \sin x}} + \frac{1}{2\sqrt{13}\sqrt{|\sin x|}} \frac{|\sin x|}{\sin x} \right],$$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}, x = k\pi \text{ sono punti di cuspide.}$

- Limitatamente all'intervallo $[0,2\pi]$: f è crescente in $]0,\frac{\pi}{6}[,]\frac{\pi}{2},\frac{5}{6}\pi[,]\pi,\frac{3}{2}\pi[$. $x=\frac{\pi}{6},\frac{5}{6}\pi$ punti di massimo relativo stazionari, $x=\frac{3}{2}\pi$ punto di massimo assoluto stazionario. $x=\frac{\pi}{2}$ punto di minimo relativo stazionario, $x=0, x=\pi$ e $x=\pi$ punti di minimo assoluto singolari (cuspidi).

2.
$$z_0 = \sqrt[4]{13}(\frac{\sqrt{3}}{2} + \frac{i}{2}), z_1 = \sqrt[4]{13}(-\frac{1}{2} + \frac{\sqrt{3}}{2}i), z_2 = \sqrt[4]{13}(-\frac{\sqrt{3}}{2} - \frac{i}{2}), z_3 = \sqrt[4]{13}(\frac{1}{2} - \frac{\sqrt{3}}{2}i).$$

- **3.** $\ell = +\infty$ se $\alpha > -1$; $\ell = \frac{1}{7}$ se $\alpha = -1$; $\ell = 0$ se $\alpha < -1$.
- 4. $\sup A = 12$
- 5. x = 6 è un punto di discontinuità eliminabile.
- 6. l'integrale vale $13(\frac{\pi}{4} \frac{1}{2}\log 2)$
- 7. $\tilde{y}(x) = \frac{13}{2}x^2e^{-x} + \pi e^{-x}$