ANALISI MATEMATICA I - I prova intermedia - 20 ottobre 2014 - Allievi MECMLT - MECLT - MATLT - AUTLT

Il NUMERO della FILA è contenuto nel testo dell'esercizio n° 5 ed è l'intero sottratto ad α .

Fila 1

- 1. $\inf A = 0$, $\sup A = \arctan \frac{1}{2}$.
- 2. Il luogo è costituito dall'unione delle due rette x = 7 e y + 7x = 0.
- 3. $z_{1,2} = 7 + i$, $z_3 = 3\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$, $z_4 = 3\left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$, $z_5 = 3\left(\frac{\sqrt{2}}{2} + -\frac{\sqrt{2}}{2}i\right)$, $z_6 = -3\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$.
- 4. $\log \frac{3}{2}$
- 5. e^2 se $\alpha = 2, +\infty$ se $\alpha > 2, 1$ se $\alpha < 2$

Fila 2

- 1. $\inf A = 0$, $\sup A = \arctan \frac{1}{3}$.
- 2. Il luogo è costituito dall'unione delle due rette x = 6 e y + 6x = 0.
- 3. $z_{1,2} = 6 + i$, $z_3 = 5\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$, $z_4 = 5\left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$, $z_5 = 5\left(\frac{\sqrt{2}}{2} + -\frac{\sqrt{2}}{2}i\right)$, $z_6 = -5\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$.
- 4. $\log \frac{4}{3}$
- **5.** $e^6 \text{ se } \alpha = 3, +\infty \text{ se } \alpha > 3, 1 \text{ se } \alpha < 3$

Fila 3

- 1. $\inf A = 0$, $\sup A = \arctan \frac{1}{4}$.
- 2. Il luogo è costituito dall'unione delle due rette x=5 e y+5x=0.
- 3. $z_{1,2} = 5 + i, z_3 = 7\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right), z_4 = 7\left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right), z_5 = 7\left(\frac{\sqrt{2}}{2} + -\frac{\sqrt{2}}{2}i\right), z_6 = -7\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right).$
- **4.** $\log \frac{5}{4}$
- 5. e^{12} se $\alpha = 4, +\infty$ se $\alpha > 4, 1$ se $\alpha < 4$

Fila 4

- 1. $\inf A = 0$, $\sup A = \arctan \frac{1}{5}$.
- 2. Il luogo è costituito dall'unione delle due rette x = 4 e y + 4x = 0.
- 3. $z_{1,2} = 4 + i, z_3 = 9\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right), z_4 = 9\left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right), z_5 = 9\left(\frac{\sqrt{2}}{2} + -\frac{\sqrt{2}}{2}i\right), z_6 = -9\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right).$
- **4.** $\log \frac{6}{5}$

5. e^{20} se $\alpha = 5, +\infty$ se $\alpha > 5, 1$ se $\alpha < 5$

Fila 5

- 1. inf A = 0, sup $A = \arctan \frac{1}{6}$.
- 2. Il luogo è costituito dall'unione delle due rette x = 3 e y + 3x = 0.

3.
$$z_{1,2} = 3 + i, z_3 = 11\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right), z_4 = 11\left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right), z_5 = 11\left(\frac{\sqrt{2}}{2} + -\frac{\sqrt{2}}{2}i\right), z_6 = -11\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right).$$

- 4. $\log \frac{7}{6}$
- **5.** e^{30} se $\alpha = 6, +\infty$ se $\alpha > 6, 1$ se $\alpha < 6$

Fila 6

- 1. $\inf A = 0$, $\sup A = \arctan \frac{1}{7}$.
- 2. Il luogo è costituito dall'unione delle due rette x=2 e y+2x=0.

3.
$$z_{1,2} = 2 + i, z_3 = 13\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right), z_4 = 13\left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right), z_5 = 13\left(\frac{\sqrt{2}}{2} + -\frac{\sqrt{2}}{2}i\right), z_6 = -13\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right).$$

- 4. $\log \frac{8}{7}$
- **5.** e^{42} se $\alpha = 7, +\infty$ se $\alpha > 7, 1$ se $\alpha < 7$