ANALISI MATEMATICA 1 - 28 giugno 2013 - Allievi - INFLT - ETELT - MECLT - AUTLT - MATLT - MEC
MLT

Il NUMERO della FILA è contenuto nel testo dell'esercizio 1 ed è la metà della costante che moltiplica arctan |x|.

Fila 1

1. $dom f = \mathbb{R}$, non ci sono simmetrie.

 $\lim_{x\to\pm\infty} f(x) = \pm\infty$, non ammette asintoti.

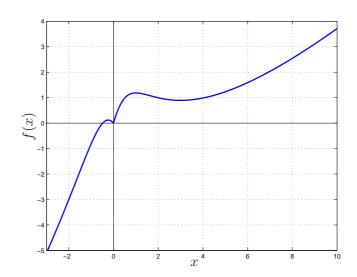
$$f'(x) = \frac{1 + x^2 - 4x + 2\text{sign}x}{1 + x^2}$$
 dom $f' = \text{dom} f \setminus \{0\}$.

x = 0 punto angoloso.

f è crescente in $]-\infty, 2-\sqrt{5}[$,]0,1[, $]3,+\infty[$; $x=2-\sqrt{5}$ e x=1 sono punti di massimo relativo; x=0 e x=3 punti di minimo relativo; f è illimitata.

$$f''(x) = \frac{4x^2 - 4x\operatorname{sign}x - 4}{(1+x^2)^2}$$

fè convessa in] $-\infty,\frac{-1-\sqrt{5}}{2}[$ e in] $\frac{1+\sqrt{5}}{2},+\infty[.$



- **2.** $\pm 7\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right); \pm \sqrt[4]{7}, \pm \sqrt[4]{7}i.$
- 3. $\ell = 7$
- 4. La serie converge per $0 < \alpha \le 4$.
- 5. $\ell = 0 \text{ se } \beta < 1/9, \ \ell = 3^{1/9} \text{ se } \beta = 1/9, \ \ell = +\infty \text{ se } \beta > 1/9.$
- **6.** l'integrale vale $2(1 + e^3 e^2)$.
- 7. $\tilde{y}(x) = \frac{1}{7} \frac{1}{3x^4} + \frac{4}{21x^7}$, $\lim_{x \to +\infty} \tilde{y}(x) = \frac{1}{7}$.

Fila 2

1. $dom f = \mathbb{R}$, non ci sono simmetrie.

 $\lim_{x\to\pm\infty} f(x) = \pm\infty$, non ammette asintoti.

$$f'(x) = \frac{1 + x^2 - 6x + 4\text{sign}x}{1 + x^2}$$
 dom $f' = \text{dom } f \setminus \{0\}$.

x = 0 punto angoloso.

f è crescente in $]-\infty, 3-\sqrt{12}[$,]0,1[, $]5,+\infty[$; $x=3-\sqrt{12}$ e x=1 sono punti di massimo relativo; x=0 e x=5 punti di minimo relativo; f è illimitata.

$$f''(x) = \frac{6x^2 - 8x\operatorname{sign}x - 6}{(1+x^2)^2}$$

fè convessa in] $-\infty,\frac{-2-\sqrt{13}}{3}[$ e in] $\frac{2+\sqrt{13}}{3},+\infty[.$

- 2. $\pm 6\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right); \pm \sqrt[4]{6}, \pm \sqrt[4]{6}i.$
- 3. $\ell = 6$
- 4. La serie converge per $0 < \alpha \le 6$.
- 5. $\ell = 0 \text{ se } \beta < 1/9, \ \ell = 3^{1/9} \text{ se } \beta = 1/9, \ \ell = +\infty \text{ se } \beta > 1/9.$
- **6.** l'integrale vale $2(1 + e^4 e^3)$.
- 7. $\tilde{y}(x) = \frac{1}{8} \frac{1}{4x^4} + \frac{4}{32x^8}, \lim_{x \to +\infty} \tilde{y}(x) = \frac{1}{8}$.

Fila 3

1. $dom f = \mathbb{R}$, non ci sono simmetrie.

 $\lim_{x\to\pm\infty} f(x) = \pm\infty$, non ammette asintoti.

$$f'(x) = \frac{1 + x^2 - 8x + 6\text{sign}x}{1 + x^2}$$
 dom $f' = \text{dom} f \setminus \{0\}$.

x = 0 punto angoloso.

f è crescente in] $-\infty$, $4-\sqrt{21}$ [,]0,1[,]7,+ ∞ [; $x=4-\sqrt{21}$ e x=1 sono punti di massimo relativo; x=0 e x=7 punti di minimo relativo; f è illimitata.

$$f''(x) = \frac{8x^2 - 12x\operatorname{sign}x - 8}{(1+x^2)^2}$$

fè convessa in] $-\infty, \frac{-3-\sqrt{25}}{4}[$ e in] $\frac{3+\sqrt{25}}{4}, +\infty[$

2. $\pm 5\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right); \pm \sqrt[4]{5}, \pm \sqrt[4]{5}i.$

3. $\ell = 5$

4. La serie converge per $0 < \alpha \le 8$.

5. $\ell = 0 \text{ se } \beta < 1/9, \ \ell = 3^{1/9} \text{ se } \beta = 1/9, \ \ell = +\infty \text{ se } \beta > 1/9$

6. l'integrale vale $2(1 + e^5 - e^4)$.

7. $\tilde{y}(x) = \frac{1}{9} - \frac{1}{5x^4} + \frac{4}{45x^9}$, $\lim_{x \to +\infty} \tilde{y}(x) = \frac{1}{9}$.

Fila 4

1. $dom f = \mathbb{R}$, non ci sono simmetrie.

 $\lim_{x\to\pm\infty} f(x) = \pm\infty$, non ammette asintoti.

$$f'(x) = \frac{1 + x^2 - 10x + 8\text{sign}x}{1 + x^2}$$
 dom $f' = \text{dom} f \setminus \{0\}$.

x = 0 punto angoloso.

f è crescente in $]-\infty, 5-\sqrt{32}[$,]0,1[, $]9,+\infty[$; $x=5-\sqrt{32}$ e x=1 sono punti di massimo relativo; x=0 e x=9 punti di minimo relativo; f è illimitata.

$$f''(x) = \frac{10x^2 - 16x\operatorname{sign}x - 10}{(1+x^2)^2}$$

f è convessa in] $-\infty, \frac{-4-\sqrt{41}}{5}[$ e in] $\frac{4+\sqrt{41}}{5}, +\infty[.$

2. $\pm 4\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right); \pm \sqrt[4]{4}, \pm \sqrt[4]{4}i.$

3. $\ell = 4$

4. La serie converge per $0 < \alpha \le 10$.

5. $\ell = 0 \text{ se } \beta < 1/9, \ \ell = 3^{1/9} \text{ se } \beta = 1/9, \ \ell = +\infty \text{ se } \beta > 1/9$

6. l'integrale vale $2(1 + e^6 - e^5)$.

7. $\tilde{y}(x) = \frac{1}{10} - \frac{1}{6x^4} + \frac{4}{60x^{10}}, \lim_{x \to +\infty} \tilde{y}(x) = \frac{1}{10}$.

Fila 5

1. $dom f = \mathbb{R}$, non ci sono simmetrie.

 $\lim_{x\to\pm\infty} f(x) = \pm\infty$, non ammette asintoti.

$$f'(x) = \frac{1 + x^2 - 12x + 10\text{sign}x}{1 + x^2}$$
 dom $f' = \text{dom} f \setminus \{0\}$.

x = 0 punto angoloso.

f è crescente in $]-\infty, 6-\sqrt{45}[$,]0,1[, $]11,+\infty[$; $x=6-\sqrt{45}$ e x=1 sono punti di massimo relativo; x=0 e x=11 punti di minimo relativo; f è illimitata.

$$f''(x) = \frac{12x^2 - 20x\operatorname{sign}x - 12}{(1+x^2)^2}$$

f è convessa in] $-\infty,\frac{-5-\sqrt{61}}{6}[$ e in] $\frac{5+\sqrt{61}}{6},+\infty[.$

- **2.** $\pm 3\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right); \pm \sqrt[4]{3}, \pm \sqrt[4]{3}i.$
- 3. $\ell = 3$
- 4. La serie converge per $0 < \alpha \le 12$.
- 5. $\ell = 0 \text{ se } \beta < 1/9, \ \ell = 3^{1/9} \text{ se } \beta = 1/9, \ \ell = +\infty \text{ se } \beta > 1/9.$
- **6.** l'integrale vale $2(1 + e^7 e^6)$.
- 7. $\tilde{y}(x) = \frac{1}{11} \frac{1}{7x^4} + \frac{4}{77x^{11}}$, $\lim_{x \to +\infty} \tilde{y}(x) = \frac{1}{11}$.

Fila 6

1. $dom f = \mathbb{R}$, non ci sono simmetrie.

 $\lim_{x\to\pm\infty} f(x) = \pm\infty$, non ammette asintoti.

$$f'(x) = \frac{1 + x^2 - 14x + 12\text{sign}x}{1 + x^2}$$
 dom $f' = \text{dom} f \setminus \{0\}$.

x = 0 punto angoloso.

f è crescente in] $-\infty$, $7-\sqrt{60}$ [,]0,1[,]13, $+\infty$ [; $x=7-\sqrt{60}$ e x=1 sono punti di massimo relativo; x=0 e x=13 punti di minimo relativo; f è illimitata.

$$f''(x) = \frac{14x^2 - 24x\operatorname{sign}x - 14}{(1+x^2)^2}$$

fè convessa in] $-\infty,\frac{-6-\sqrt{85}}{7}[$ e in] $\frac{6+\sqrt{85}}{7},+\infty[.$

- **2.** $\pm 2\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right); \pm \sqrt[4]{2}, \pm \sqrt[4]{2}i.$
- 3. $\ell = 2$
- 4. La serie converge per $0 < \alpha \le 14$.
- 5. $\ell = 0 \text{ se } \beta < 1/9, \ \ell = 3^{1/9} \text{ se } \beta = 1/9, \ \ell = +\infty \text{ se } \beta > 1/9.$
- **6.** l'integrale vale $2(1 + e^8 e^7)$.
- 7. $\tilde{y}(x) = \frac{1}{12} \frac{1}{8x^4} + \frac{4}{96x^{12}}$, $\lim_{x \to +\infty} \tilde{y}(x) = \frac{1}{12}$.