Ana	LISI MATEMATICA 2 - III PROVA INTERMEDIA 20 dicembre 2017 FOGLIO A
Cogr	nome
Matı	ricola Firma Firma
Istru	zioni
1.	COMPILARE la parte precedente queste istruzioni, in particolare, scrivere cognome e nome (in stampatello), numero di matricola e firmare.
2.	SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
3.	I PUNTEGGI attribuiti per la risposta esatta sono indicati alla fine di ogni quesito.
4.	Gli esercizi 3 e 5 sono in ALTERNATIVA .
5.	PROIBITO usare libri, quaderni, calcolatori, telefoni cellulari.
6.	CONSEGNARE questo foglio e tutti i fogli di protocollo.
7.	TENERE il foglio B come promemoria delle risposte date.
8.	TEMPO a disposizione: 90 min.
1.	Sia $\{f_n\}_{n\in\mathbb{Z}^+}$ la successione di funzioni definita da
	$f_n(x) = \frac{n}{x+2n}, x \ge 0.$
	Si determini l'insieme I di convergenza puntuale e la funzione limite. Si discuta la convergenza uniforme in I ed, eventualmente nei suoi sottoinsiemi.
	Risposta:
2.	Sia $\alpha \in \mathbb{R}$. Data la serie di potenze
	$\sum_{n=0}^{+\infty} (n!)^{2\alpha} \frac{x^n}{(n+1)!},$

$$\sum_{n=0}^{+\infty} (n!)^{2\alpha} \frac{x^n}{(n+1)!},$$

si calcoli il raggio di convergenza al variare di $\alpha \in \mathbb{R}$; nei casi in cui è finito si studi anche la convergenza sul bordo.

Risposta:

3. Si consideri la seguente serie di funzioni

$$\sum_{n=1}^{+\infty} \frac{(\cos x)^n}{n+2+e^{\cos x}}, \qquad x \in [0,\pi].$$

Si discuta la convergenza puntuale in $[0, \frac{\pi}{2}]$ e totale in $[\frac{\pi}{3}, \frac{\pi}{2}]$. Converge in $x = \pi$?

Risposta:

4.	Si consideri la funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$, di periodo 2π , definita in $(-\pi, \pi]$ da $f(x) = 1/2$ se $-\pi < x \le 0$, $f(x) = \cos x/2$ se $0 < x \le \pi$ e prolungata per periodicità; sia $S(x) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + b_n \sin(nx)$ la sua serie di Fourier. Calcolare i coefficienti a_0, a_1, b_1 . Discutere la convergenza puntuale ed uniforme di $S(x)$, sulla base delle caratteristiche di f . Si calcolino $S(4\pi), S(\frac{5}{2}\pi), S(3\pi)$.
	Risposta:
5.	Si consideri il problema di Cauchy
	$\begin{cases} y' = \arctan(y^2 - 4) \\ y(0) = y_0. \end{cases}$
	Si determini, al variare di $y_0 \in \mathbb{R}$, se il problema ammette esistenza locale e le eventuali soluzioni stazionarie. Si studino, al variare di $y_0 \in \mathbb{R}$, la monotonia, asintoti, concavità e flessi delle soluzioni.
	Risposta:

1. Sia $\{f_n\}_{n\in\mathbb{Z}^+}$ la successione di funzioni definita da

$$f_n(x) = \frac{n}{x+2n}, \quad x \ge 0.$$

Si determini l'insieme I di convergenza puntuale e la funzione limite. Si discuta la convergenza uniforme in I ed, eventualmente nei suoi sottoinsiemi.

Risposta:

2. Sia $\alpha \in \mathbb{R}$. Data la serie di potenze

$$\sum_{n=0}^{+\infty} (n!)^{2\alpha} \frac{x^n}{(n+1)!},$$

si calcoli il raggio di convergenza al variare di $\alpha \in \mathbb{R}$; nei casi in cui è finito si studi anche la convergenza sul bordo.

.....

Risposta: _

3. Si consideri la seguente serie di funzioni

$$\sum_{n=1}^{+\infty} \frac{(\cos x)^n}{n+2+e^{\cos x}}, \qquad x \in [0,\pi] .$$

Si discuta la convergenza puntuale in $[0, \frac{\pi}{2}]$ e totale in $[\frac{\pi}{3}, \frac{\pi}{2}]$. Converge in $x = \pi$?

Risposta:

4. Si consideri la funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$, di periodo 2π , definita in $(-\pi, \pi]$ da f(x) = 1/2 se $-\pi < x \le 0$, $f(x) = \cos x/2$ se $0 < x \le \pi$ e prolungata per periodicità; sia $S(x) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + b_n \sin(nx)$ la sua serie di Fourier. Calcolare i coefficienti a_0, a_1, b_1 . Discutere la convergenza puntuale ed uniforme di S(x), sulla base delle caratteristiche di f. Si calcolino $S(4\pi), S(\frac{5}{2}\pi), S(3\pi)$.

.

Risposta:

5. Si consideri il problema di Cauchy

$$\begin{cases} y' = \arctan(y^2 - 4) \\ y(0) = y_0. \end{cases}$$

Si determini, al variare di $y_0 \in \mathbb{R}$, se il problema ammette esistenza locale e le eventuali soluzioni stazionarie. Si studino, al variare di $y_0 \in \mathbb{R}$, la monotonia, asintoti, concavità e flessi delle soluzioni.

......

Risposta: