Cognome e nome Matricola Firma Matricola
--

Corso di Laurea: \Diamond EDIQQ \Diamond EDILMU

Istruzioni

- 1. COMPILARE la parte precedente queste istruzioni, in particolare, scrivere cognome e nome (in stampatello), firmare, indicare il numero di matricola e segnare il proprio corso di laurea.
- 2. SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. I PUNTEGGI attribuiti per la risposta esatta sono indicati alla fine di ogni quesito.
- 4. PROIBITO usare libri, quaderni, calcolatori.
- 5. CONSEGNARE il foglio A e tutti i fogli di protocollo.
- 6. TENERE il foglio B come promemoria delle risposte date.
- 7. TEMPO a disposizione: 150 min.
- 1. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ la funzione definita da

$$f(x,y) = \begin{cases} \frac{|x|^{1/2} \log(1 + (x^2 + y^2)^{1/2})}{(x^2 + y^2)^{1/2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

Studiare la continuità, l'esistenza delle derivate parziali e la differenziabilità di f in (0,0).

Risposta [4 punti]:

2. Si consideri la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = 3y(x^3 - x).$$

Determinare e classificare i punti stazionari di f.

.....

Risposta [4 punti]:

3. Calcolare l'integrale curvilineo rispetto alla lunghezza d'arco

$$\int_{\Gamma} \frac{3}{7} \sqrt{1 + 4x^2 + 6y} \, ds$$

dove Γ è l'arco di parabola $y = 2x^2$ con $x \in [0, 1/2]$.

.....

Risposta [4 punti]:

4. Calcolare l'integrale doppio $\iint_D \left[\arctan(x(1-y^2)) + \frac{3}{4}\right] dxdy$ dove $D = \{(x,y) \in \mathbb{R}^2 : -2 \le y \le -2x^2, -1 \le x \le 1\}.$

.....

Risposta [4 punti]:

5. Si consideri la successione di funzioni $\{f_n\}_{n\geq 1}$ definita da

$$f_n(x) = n^{\alpha} \left(\frac{x}{7}\right)^n \qquad x \ge 0, \quad \alpha \in \mathbb{R}.$$

Al variare di $\alpha \in \mathbb{R}$ si discuta la convergenza puntuale ed uniforme.

Risposta [4 punti]:

6. Sia $\beta \in \mathbb{R}$. Si consideri la seguente serie di potenze

$$\sum_{n=0}^{+\infty} \frac{(x-7)^{n+1}}{(n+1)(n!)^{\beta-1}7^{n+1}}, \quad x \in \mathbb{R}.$$

Si calcoli il raggio di convergenza al variare di $\beta \in \mathbb{R}$ e, nei casi in cui è finito, si studi la convergenza sul bordo e la convergenza uniforme. Per $\beta = 2$ si calcoli la funzione somma s(x) in un opportuno intorno di x = 7.

.....

Risposta [4 punti]:

7. Si consideri la funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$, di periodo 2π , definita in $(-\pi, \pi]$ da

$$f(x) = \begin{cases} 3(1 - \cos x) & \text{se } |x| < \frac{\pi}{2} \\ 0 & \text{altrimenti} \end{cases}$$

e prolungata per periodicità; sia $S(x) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + b_n \sin(nx)$ la sua serie di Fourier. Calcolare i coefficienti a_0 , a_1 , b_1 e, sulla base delle caratteristiche di f, la somma $S(\frac{5}{2}\pi)$.

.....

Risposta [4 punti]:

8. Si consideri il problema di Cauchy

$$\begin{cases} y' = \frac{1}{y^2 + 2} \\ y(0) = y_0 \in \mathbb{R}. \end{cases}$$

Si studi, al variare di $y_0 \in \mathbb{R}$, se il problema ammette esistenza ed unicità locali e globali e si determinino le eventuali soluzioni stazionarie. Si studino, monotonia, concavità e flessi delle soluzioni. Si discuta l'esistenza di eventuali asintoti (orizzontali, verticali, obliqui).

.....

Risposta [5 punti]:

1. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ la funzione definita da

$$f(x,y) = \begin{cases} \frac{|x|^{1/2}\log(1 + (x^2 + y^2)^{1/2})}{(x^2 + y^2)^{1/2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

Studiare la continuità, l'esistenza delle derivate parziali e la differenziabilità di f in (0,0).

.....

Risposta [4 punti]:

2. Si consideri la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = 3y(x^3 - x).$$

Determinare e classificare i punti stazionari di f.

.....

Risposta [4 punti]:

3. Calcolare l'integrale curvilineo rispetto alla lunghezza d'arco

$$\int_{\Gamma} \frac{3}{7} \sqrt{1 + 4x^2 + 6y} \, ds$$

dove Γ è l'arco di parabola $y=2x^2$ con $x\in[0,1/2].$

.....

Risposta [4 punti]:

4. Calcolare l'integrale doppio $\iint_D \left[\arctan(x(1-y^2)) + \frac{3}{4}\right] dxdy$ dove $D = \{(x,y) \in \mathbb{R}^2 : -2 \le y \le -2x^2, -1 \le x \le 1\}.$

.....

Risposta [4 punti]:

5. Si consideri la successione di funzioni $\{f_n\}_{n\geq 1}$ definita da

$$f_n(x) = n^{\alpha} \left(\frac{x}{7}\right)^n \qquad x \ge 0, \quad \alpha \in \mathbb{R}.$$

Al variare di $\alpha \in \mathbb{R}$ si discuta la convergenza puntuale ed uniforme.

.....

Risposta [4 punti]:

6	Sia	BE	= TR	Si	consideri	la.	seguente	serie	di	potenze
υ.	Dia	ν	_ π/z•	$\mathcal{O}_{\mathbf{I}}$	COMBIGUIT	10	BUZUCIIU	BULLU	uı	DOUGILZO

$$\sum_{n=0}^{+\infty} \frac{(x-7)^{n+1}}{(n+1)(n!)^{\beta-1}7^{n+1}}, \quad x \in \mathbb{R}.$$

Si calcoli il raggio di convergenza al variare di $\beta \in \mathbb{R}$ e, nei casi in cui è finito, si studi la convergenza sul bordo e la convergenza uniforme. Per $\beta = 2$ si calcoli la funzione somma s(x) in un opportuno intorno di x = 7.

.....

Risposta [4 punti]:

7. Si consideri la funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$, di periodo 2π , definita in $(-\pi, \pi]$ da

$$f(x) = \begin{cases} 3(1 - \cos x) & \text{se } |x| < \frac{\pi}{2} \\ 0 & \text{altrimenti} \end{cases}$$

e prolungata per periodicità; sia $S(x) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + b_n \sin(nx)$ la sua serie di Fourier. Calcolare i coefficienti a_0 , a_1 , b_1 e, sulla base delle caratteristiche di f, la somma $S(\frac{5}{2}\pi)$.

.....

Risposta [4 punti]:

8. Si consideri il problema di Cauchy

$$\begin{cases} y' = \frac{1}{y^2 + 2} \\ y(0) = y_0 \in \mathbb{R}. \end{cases}$$

Si studi, al variare di $y_0 \in \mathbb{R}$, se il problema ammette esistenza ed unicità locali e globali e si determinino le eventuali soluzioni stazionarie. Si studino, monotonia, concavità e flessi delle soluzioni. Si discuta l'esistenza di eventuali asintoti (orizzontali, verticali, obliqui).

.....

Risposta [5 punti]: