Il NUMERO della FILA è l'intero diminuito di 1 del radicando del testo dell'esercizio n° 1.

Fila 1

- 1. f_n converge puntualmente (ma non uniformemente) in $[0, +\infty[$ a f con $f(x) \equiv 0$ per x > 0, $f(0) = \frac{1}{\sqrt{2}}$; converge uniformemente in ogni intervallo $[a, +\infty[$ con a > 0. La tesi del teorema di passaggio al limite sotto il segno di integrale vale, verificando direttamente.
- 2. Per $\alpha > 0$ la serie converge puntualmente in tutto \mathbb{R} ; per $\alpha = 0$ la serie converge puntualmente in [-1,1[; per $\alpha < 0$ la serie converge solo in x = 0. $S(x) = e^x(x-1) + 1$.
- 3. Convergenza totale per $\beta > 8$; puntuale per $7 < \beta \leq 8$ in \mathbb{R} (eccetto $0, \pm \pi \dots$) mediante un'estensione del criterio di Dirichlet.
- 4. La funzione è pari, quindi $b_n = 0$ per ogni $n \in \mathbb{Z}^+$ $a_0 = 5$, $a_n = \frac{2}{\pi^2 n^2} (1 (-1)^n)$. Converge uniformemente in tutto \mathbb{R} . poiché C^1 a tratti; S(0) = 3, quindi $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$.
- 5. $f(t,y) = \arctan(y^2 3) \frac{\pi}{4} \, \text{è} \, C^1(\mathbb{R}^2)$, e sublineare, quindi esistenza ed unicità globali; $u = \pm 2$ soluzioni stazionarie; se $y_0 < -2$ o $y_0 > 2$, soluzione u crescente; se $-2 < y_0 < 2$ soluzione u decrescente. Se $-2 < y_0 < 2$, la soluzione u è concava per $t < t^*$ (con $u(t^*) = 0$), convessa per $t > t^*$; se $y_0 < -2$, la soluzione u è concava, se $y_0 > 2$, convessa. Se $y_0 < -2$, $\lim_{t \to -\infty} u(t) = -\infty$ e u = -2 è asintoto orizzontale per $t \to +\infty$; se $-2 < y_0 < 2$, $\lim_{t \to +\infty} u(t) = \mp 2$ e $u = \mp 2$ è asintoto orizzontale per $t \to \pm \infty$; se $y_0 > 2$, $\lim_{t \to +\infty} u(t) = +\infty$ e u = 2 è asintoto orizzontale per $t \to -\infty$.

Fila 2

- 1. f_n converge puntualmente (ma non uniformemente) in $[0, +\infty[$ a f con $f(x) \equiv 0$ per x > 0, $f(0) = \frac{1}{\sqrt{3}}$; converge uniformemente in ogni intervallo $[a, +\infty[$ con a > 0. La tesi del teorema di passaggio al limite sotto il segno di integrale vale, verificando direttamente.
- 2. Per $\alpha > 0$ la serie converge puntualmente in tutto \mathbb{R} ; per $\alpha = 0$ la serie converge puntualmente in [-1, 1[; per $\alpha < 0$ la serie converge solo in x = 0. $S(x) = e^x(x 1) + 1$.
- 3. Convergenza totale per $\beta > 7$; puntuale per $6 < \beta \leq 7$ in \mathbb{R} (eccetto $0, \pm \pi \dots$) mediante un'estensione del criterio di Dirichlet.
- 4. La funzione è pari, quindi $b_n = 0$ per ogni $n \in \mathbb{Z}^+$ $a_0 = 9$, $a_n = \frac{2}{\pi^2 n^2} (1 (-1)^n)$. Converge uniformemente in tutto \mathbb{R} . poiché C^1 a tratti; S(0) = 5, quindi $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$.
- 5. $f(t,y) = \arctan(y^2 8) \frac{\pi}{4}$ è $C^1(\mathbb{R}^2)$, e sublineare, quindi esistenza ed unicità globali; $u = \pm 3$ soluzioni stazionarie; se $y_0 < -3$ o $y_0 > 3$, soluzione u crescente; se $-3 < y_0 < 3$ soluzione u decrescente. Se $-3 < y_0 < 3$, la soluzione u è concava per $t < t^*$ (con $u(t^*) = 0$), convessa per $t > t^*$; se $y_0 < -3$, la soluzione u è concava, se $y_0 > 3$, convessa. Se $y_0 < -3$, $\lim_{t \to -\infty} u(t) = -\infty$ e u = -3 è asintoto orizzontale per $t \to +\infty$; se $-3 < y_0 < 3$, $\lim_{t \to +\infty} u(t) = \mp 3$ e $u = \mp 3$ è asintoto orizzontale per $t \to \pm \infty$; se $y_0 > 3$, $\lim_{t \to +\infty} u(t) = +\infty$ e u = 3 è asintoto orizzontale per $t \to -\infty$.

Fila 3

- 1. f_n converge puntualmente (ma non uniformemente) in $[0, +\infty[$ a f con $f(x) \equiv 0$ per x > 0, $f(0) = \frac{1}{\sqrt{4}}$; converge uniformemente in ogni intervallo $[a, +\infty[$ con a > 0. La tesi del teorema di passaggio al limite sotto il segno di integrale vale, verificando direttamente.
- 2. Per $\alpha > 0$ la serie converge puntualmente in tutto \mathbb{R} ; per $\alpha = 0$ la serie converge puntualmente in [-1, 1[; per $\alpha < 0$ la serie converge solo in x = 0. $S(x) = e^x(x 1) + 1$.
- 3. Convergenza totale per $\beta > 6$; puntuale per $5 < \beta \leq 6$ in \mathbb{R} (eccetto $0, \pm \pi \dots$) mediante un'estensione del criterio di Dirichlet.
- 4. La funzione è pari, quindi $b_n = 0$ per ogni $n \in \mathbb{Z}^+$ $a_0 = 13$, $a_n = \frac{2}{\pi^2 n^2} (1 (-1)^n)$. Converge uniformemente in tutto \mathbb{R} . poiché C^1 a tratti; S(0) = 7, quindi $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$.
- 5. $f(t,y) = \arctan(y^2 15) \frac{\pi}{4}$ è $C^1(\mathbb{R}^2)$, e sublineare, quindi esistenza ed unicità globali; $u = \pm 4$ soluzioni stazionarie; se $y_0 < -4$ o $y_0 > 4$, soluzione u crescente; se $-4 < y_0 < 4$ soluzione u decrescente. Se $-4 < y_0 < 4$, la soluzione u è concava per $t < t^*$ (con $u(t^*) = 0$), convessa per $t > t^*$; se $y_0 < -4$, la soluzione u è concava, se $y_0 > 4$, convessa. Se $y_0 < -4$, $\lim_{t \to -\infty} u(t) = -\infty$ e u = -4 è asintoto orizzontale per $t \to +\infty$; se $-4 < y_0 < 4$, $\lim_{t \to +\infty} u(t) = \mp 4$ e $u = \mp 4$ è asintoto orizzontale per $t \to \pm \infty$; se $y_0 > 4$, $\lim_{t \to +\infty} u(t) = +\infty$ e u = 4 è asintoto orizzontale per $t \to -\infty$.

Fila 4

- 1. f_n converge puntualmente (ma non uniformemente) in $[0, +\infty[$ a f con $f(x) \equiv 0$ per x > 0, $f(0) = \frac{1}{\sqrt{5}}$; converge uniformemente in ogni intervallo $[a, +\infty[$ con a > 0. La tesi del teorema di passaggio al limite sotto il segno di integrale vale, verificando direttamente.
- 2. Per $\alpha > 0$ la serie converge puntualmente in tutto \mathbb{R} ; per $\alpha = 0$ la serie converge puntualmente in [-1,1[; per $\alpha < 0$ la serie converge solo in x = 0. $S(x) = e^x(x-1) + 1$.
- 3. Convergenza totale per $\beta > 5$; puntuale per $4 < \beta \leq 5$ in \mathbb{R} (eccetto $0, \pm \pi \dots$) mediante un'estensione del criterio di Dirichlet.
- 4. La funzione è pari, quindi $b_n=0$ per ogni $n\in\mathbb{Z}^+$ $a_0=17$, $a_n=\frac{2}{\pi^2n^2}(1-(-1)^n)$. Converge uniformemente in tutto \mathbb{R} . poiché C^1 a tratti; S(0)=9, quindi $\sum_{k=0}^{+\infty}\frac{1}{(2k+1)^2}=\frac{\pi^2}{8}$.
- 5. $f(t,y) = \arctan(y^2 24) \frac{\pi}{4}$ è $C^1(\mathbb{R}^2)$, e sublineare, quindi esistenza ed unicità globali; $u = \pm 5$ soluzioni stazionarie; se $y_0 < -5$ o $y_0 > 5$, soluzione u crescente; se $-5 < y_0 < 5$ soluzione u decrescente. Se $-5 < y_0 < 5$, la soluzione u è concava per $t < t^*$ (con $u(t^*) = 0$), convessa per $t > t^*$; se $y_0 < -5$, la soluzione u è concava, se $y_0 > 5$, convessa. Se $y_0 < -5$, $\lim_{t \to -\infty} u(t) = -\infty$ e u = -5 è asintoto orizzontale per $t \to +\infty$; se $y_0 < 5$, $\lim_{t \to +\infty} u(t) = \pm 5$ e $y_0 < 5$, $\lim_{t \to +\infty} u(t) = \pm 5$ e $y_0 < 5$, $\lim_{t \to +\infty} u(t) = \pm 5$ e asintoto orizzontale per $t \to -\infty$.

Fila 5

1. f_n converge puntualmente (ma non uniformemente) in $[0, +\infty[$ a f con $f(x) \equiv 0$ per x > 0, $f(0) = \frac{1}{\sqrt{6}}$; converge uniformemente in ogni intervallo $[a, +\infty[$ con a > 0. La tesi del teorema di passaggio al limite sotto il segno di integrale vale, verificando direttamente.

- 2. Per $\alpha > 0$ la serie converge puntualmente in tutto \mathbb{R} ; per $\alpha = 0$ la serie converge puntualmente in [-1, 1[; per $\alpha < 0$ la serie converge solo in x = 0. $S(x) = e^x(x 1) + 1$.
- 3. Convergenza totale per $\beta > 4$; puntuale per $3 < \beta \leq 4$ in \mathbb{R} (eccetto $0, \pm \pi \dots$) mediante un'estensione del criterio di Dirichlet.
- 4. La funzione è pari, quindi $b_n = 0$ per ogni $n \in \mathbb{Z}^+$ $a_0 = 21$, $a_n = \frac{2}{\pi^2 n^2} (1 (-1)^n)$. Converge uniformemente in tutto \mathbb{R} . poiché C^1 a tratti; S(0) = 11, quindi $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$.
- 5. $f(t,y) = \arctan(y^2 35) \frac{\pi}{4}$ è $C^1(\mathbb{R}^2)$, e sublineare, quindi esistenza ed unicità globali; $u = \pm 6$ soluzioni stazionarie; se $y_0 < -6$ o $y_0 > 6$, soluzione u crescente; se $-6 < y_0 < 6$ soluzione u decrescente. Se $-6 < y_0 < 6$, la soluzione u è concava per $t < t^*$ (con $u(t^*) = 0$), convessa per $t > t^*$; se $y_0 < -6$, la soluzione u è concava, se $y_0 > 6$, convessa. Se $y_0 < -6$, $\lim_{t \to -\infty} u(t) = -\infty$ e u = -6 è asintoto orizzontale per $t \to +\infty$; se $-6 < y_0 < 6$, $\lim_{t \to +\infty} u(t) = \mp 6$ e $u = \mp 6$ è asintoto orizzontale per $t \to \pm \infty$; se $y_0 > 6$, $\lim_{t \to +\infty} u(t) = +\infty$ e u = 6 è asintoto orizzontale per $t \to -\infty$.

Fila 6

- 1. f_n converge puntualmente (ma non uniformemente) in $[0, +\infty[$ a f con $f(x) \equiv 0$ per x > 0, $f(0) = \frac{1}{\sqrt{7}}$; converge uniformemente in ogni intervallo $[a, +\infty[$ con a > 0. La tesi del teorema di passaggio al limite sotto il segno di integrale vale, verificando direttamente.
- 2. Per $\alpha > 0$ la serie converge puntualmente in tutto \mathbb{R} ; per $\alpha = 0$ la serie converge puntualmente in [-1,1[; per $\alpha < 0$ la serie converge solo in x = 0. $S(x) = e^x(x-1) + 1$.
- 3. Convergenza totale per $\beta>3$; puntuale per $2<\beta\leq 3$ in $\mathbb R$ (eccetto $0,\pm\pi\ldots$) mediante un'estensione del criterio di Dirichlet.
- 4. La funzione è pari, quindi $b_n = 0$ per ogni $n \in \mathbb{Z}^+$ $a_0 = 25$, $a_n = \frac{2}{\pi^2 n^2} (1 (-1)^n)$. Converge uniformemente in tutto \mathbb{R} . poiché C^1 a tratti; S(0) = 13, quindi $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$.
- 5. $f(t,y) = \arctan(y^2 48) \frac{\pi}{4}$ è $C^1(\mathbb{R}^2)$, e sublineare, quindi esistenza ed unicità globali; $u = \pm 7$ soluzioni stazionarie; se $y_0 < -7$ o $y_0 > 7$, soluzione u crescente; se $-7 < y_0 < 7$ soluzione u decrescente. Se $-7 < y_0 < 7$, la soluzione u è concava per $t < t^*$ (con $u(t^*) = 0$), convessa per $t > t^*$; se $y_0 < -7$, la soluzione u è concava, se $y_0 > 7$, convessa. Se $y_0 < -7$, $\lim_{t \to -\infty} u(t) = -\infty$ e u = -7 è asintoto orizzontale per $t \to +\infty$; se $-7 < y_0 < 7$, $\lim_{t \to +\infty} u(t) = \mp 7$ e $u = \mp 7$ è asintoto orizzontale per $t \to \pm \infty$; se $y_0 > 7$, $\lim_{t \to +\infty} u(t) = +\infty$ e u = 7 è asintoto orizzontale per $t \to -\infty$.