Il numero del compito è dato dalla metà del coefficiente di $\sqrt{x^2 + y^2}$ nell'integrale triplo.

COMPITO 1

- 1. Parte di piano compresa fra l'ellisse di semiassi 1 e 2 ed il cerchio di raggio 1, centrati nell'origine, esclusi i bordi.
- 2. (0,1/2) punto di minimo; se |x| < 1, (x,x^2) sono punti di massimo; se |x| > 1, (x,x^2) sono punti di minimo.
- 3. $\frac{3}{2}$
- 4.5π
- 5. converge puntualmente (ma non uniformemente) a $f(x) \equiv 0$ in tutto \mathbb{R} : c'è convergenza uniforme nei sottoinsiemi limitati superiormente. Il limite vale $\frac{1}{2}\pi$ (l'integrale è l'area di un semicerchio).
- 6. raggio 7 indipendente da α , converge anche in ± 7 se $\alpha > 1$.
- 7. $\log\left(\log^2 y + \frac{1}{2}\right)$ è $C^1(\mathbb{R} \times \mathbb{R}^+)$ quindi esistenza ed unicità locali; per la sublinearità l'intervallo massimale di esistenza è illimitato a destra. $y_0 = e^{\pm \sqrt{\frac{1}{2}}}$, $u(t) \equiv e^{\pm \sqrt{\frac{1}{2}}}$ soluzioni stazionarie. Se $0 < y_0 < e^{-\sqrt{\frac{1}{2}}}$ o $y_0 > e^{\sqrt{\frac{1}{2}}}$ soluzione u crescente. Se $y_0 > e^{\sqrt{\frac{1}{2}}}$, $\lim_{t \to +\infty} u(t) = +\infty$, mentre se $0 < y_0 < e^{\sqrt{\frac{1}{2}}}$ $\lim_{t \to +\infty} u(t) = e^{-\sqrt{\frac{1}{2}}}$. Convessa se $y_0 > e^{\sqrt{\frac{1}{2}}}$; concava se $y_0 < e^{-\sqrt{\frac{1}{2}}}$; se $e^{-\sqrt{\frac{1}{2}}} < y_0 < e^{\sqrt{\frac{1}{2}}}$ esiste un punto di flesso $t_0 \in \mathbb{R}$ (con $u(t_0) = 1$), quindi concava per $t < t_0$ e convessa per $t > t_0$.
- 8. $y(t) = 7[1 + 3t + \frac{1}{2}\sin 2t].$

COMPITO 2

- 1. Parte di piano compresa fra l'ellisse di semiassi 1 e 3 ed il cerchio di raggio 1, centrati nell'origine, esclusi i bordi.
- 2. (0,1/2) punto di minimo; se $|x|<1,\ (x,x^2)$ sono punti di massimo; se $|x|>1,\ (x,x^2)$ sono punti di minimo.
- 3. $\frac{5}{2}$
- 4. 10π
- 5. converge puntualmente (ma non uniformemente) a $f(x) \equiv 0$ in tutto \mathbb{R} : c'è convergenza uniforme nei sottoinsiemi limitati superiormente. Il limite vale 2π (l'integrale è l'area di un semicerchio).
- 6. raggio 6 indipendente da α , converge anche in ± 6 se $\alpha > 2$.
- 7. $\log\left(\log^2 y + \frac{1}{3}\right)$ è $C^1(\mathbb{R} \times \mathbb{R}^+)$ quindi esistenza ed unicità locali; per la sublinearità l'intervallo massimale di esistenza è illimitato a destra. $y_0 = e^{\pm\sqrt{\frac{2}{3}}}, \ u(t) \equiv e^{\pm\sqrt{\frac{2}{3}}}$ soluzioni stazionarie. Se $0 < y_0 < e^{-\sqrt{\frac{2}{3}}}$ o $y_0 > e^{\sqrt{\frac{2}{3}}}$ soluzione u crescente. Se $y_0 > e^{\sqrt{\frac{2}{3}}}, \lim_{t \to +\infty} u(t) = +\infty$, mentre se $0 < y_0 < e^{\sqrt{\frac{2}{3}}} \lim_{t \to +\infty} u(t) = e^{-\sqrt{\frac{2}{3}}}$. Convessa se $y_0 > e^{\sqrt{\frac{2}{3}}}$; concava se $y_0 < e^{-\sqrt{\frac{2}{3}}}$; se

 $e^{-\sqrt{\frac{2}{3}}} < y_0 < e^{\sqrt{\frac{2}{3}}}$ esiste un punto di flesso $t_0 \in \mathbb{R}$ (con $u(t_0) = 1$), quindi concava per $t < t_0$ e convessa per $t > t_0$.

8. $y(t) = 6[1 + 3t + \frac{1}{2}\sin 2t].$

COMPITO 3

- 1. Parte di piano compresa fra l'ellisse di semiassi 1 e 4 ed il cerchio di raggio 1, centrati nell'origine, esclusi i bordi.
- 2. (0,1/2) punto di minimo; se |x| < 1, (x,x^2) sono punti di massimo; se |x| > 1, (x,x^2) sono punti di minimo.
- 3. $\frac{7}{2}$
- 4. 15π
- 5. converge puntualmente (ma non uniformemente) a $f(x) \equiv 0$ in tutto \mathbb{R} : c'è convergenza uniforme nei sottoinsiemi limitati superiormente. Il limite vale $\frac{9}{2}\pi$ (l'integrale è l'area di un semicerchio).
- 6. raggio 5 indipendente da α , converge anche in ± 5 se $\alpha > 3$.
- 7. $\log\left(\log^2 y + \frac{1}{4}\right)$ è $C^1(\mathbb{R} \times \mathbb{R}^+)$ quindi esistenza ed unicità locali; per la sublinearità l'intervallo massimale di esistenza è illimitato a destra. $y_0 = e^{\pm\sqrt{\frac{3}{4}}}, \ u(t) \equiv e^{\pm\sqrt{\frac{3}{4}}}$ soluzioni stazionarie. Se $0 < y_0 < e^{-\sqrt{\frac{3}{4}}}$ o $y_0 > e^{\sqrt{\frac{3}{4}}}$ soluzione u crescente. Se $y_0 > e^{\sqrt{\frac{3}{4}}}, \lim_{t \to +\infty} u(t) = +\infty$, mentre se $0 < y_0 < e^{\sqrt{\frac{3}{4}}} \lim_{t \to +\infty} u(t) = e^{-\sqrt{\frac{3}{4}}}$. Convessa se $y_0 > e^{\sqrt{\frac{3}{4}}}$; concava se $y_0 < e^{-\sqrt{\frac{3}{4}}}$; se $e^{-\sqrt{\frac{3}{4}}} < y_0 < e^{\sqrt{\frac{3}{4}}}$ esiste un punto di flesso $t_0 \in \mathbb{R}$ (con $u(t_0) = 1$), quindi concava per $t < t_0$ e convessa per $t > t_0$.
- 8. $y(t) = 5[1 + 3t + \frac{1}{2}\sin 2t].$

COMPITO 4

- 1. Parte di piano compresa fra l'ellisse di semiassi 1 e 5 ed il cerchio di raggio 1, centrati nell'origine, esclusi i bordi.
- 2. (0,1/2) punto di minimo; se |x| < 1, (x,x^2) sono punti di massimo; se |x| > 1, (x,x^2) sono punti di minimo.
- 3. $\frac{9}{2}$
- 4. 20π
- 5. converge puntualmente (ma non uniformemente) a $f(x) \equiv 0$ in tutto \mathbb{R} : c'è convergenza uniforme nei sottoinsiemi limitati superiormente. Il limite vale 8π (l'integrale è l'area di un semicerchio).
- 6. raggio 4 indipendente da α , converge anche in ± 4 se $\alpha > 4$.

- 7. $\log\left(\log^2 y + \frac{1}{5}\right)$ è $C^1(\mathbb{R} \times \mathbb{R}^+)$ quindi esistenza ed unicità locali; per la sublinearità l'intervallo massimale di esistenza è illimitato a destra. $y_0 = e^{\pm\sqrt{\frac{4}{5}}}, \ u(t) \equiv e^{\pm\sqrt{\frac{4}{5}}}$ soluzioni stazionarie. Se $0 < y_0 < e^{-\sqrt{\frac{4}{5}}}$ o $y_0 > e^{\sqrt{\frac{4}{5}}}$ soluzione u crescente. Se $y_0 > e^{\sqrt{\frac{4}{5}}}, \lim_{t \to +\infty} u(t) = +\infty$, mentre se $0 < y_0 < e^{\sqrt{\frac{4}{5}}} \lim_{t \to +\infty} u(t) = e^{-\sqrt{\frac{4}{5}}}$. Convessa se $y_0 > e^{\sqrt{\frac{4}{5}}}$; concava se $y_0 < e^{-\sqrt{\frac{4}{5}}}$; se $e^{-\sqrt{\frac{4}{5}}} < y_0 < e^{\sqrt{\frac{4}{5}}}$ esiste un punto di flesso $t_0 \in \mathbb{R}$ (con $u(t_0) = 1$), quindi concava per $t < t_0$ e convessa per $t > t_0$.
- 8. $y(t) = 4[1 + 3t + \frac{1}{2}\sin 2t].$

COMPITO 5

- 1. Parte di piano compresa fra l'ellisse di semiassi 1 e 6 ed il cerchio di raggio 1, centrati nell'origine, esclusi i bordi.
- 2. (0,1/2) punto di minimo; se |x| < 1, (x,x^2) sono punti di massimo; se |x| > 1, (x,x^2) sono punti di minimo.
- 3. $\frac{11}{2}$
- 4. 25π
- 5. converge puntualmente (ma non uniformemente) a $f(x) \equiv 0$ in tutto \mathbb{R} : c'è convergenza uniforme nei sottoinsiemi limitati superiormente. Il limite vale $\frac{25}{2}\pi$ (l'integrale è l'area di un semicerchio).
- 6. raggio 3 indipendente da α , converge anche in ± 3 se $\alpha > 5$.
- 7. $\log\left(\log^2 y + \frac{1}{6}\right)$ è $C^1(\mathbb{R} \times \mathbb{R}^+)$ quindi esistenza ed unicità locali; per la sublinearità l'intervallo massimale di esistenza è illimitato a destra. $y_0 = e^{\pm\sqrt{\frac{5}{6}}}, u(t) \equiv e^{\pm\sqrt{\frac{5}{6}}}$ soluzioni stazionarie. Se $0 < y_0 < e^{-\sqrt{\frac{5}{6}}}$ o $y_0 > e^{\sqrt{\frac{5}{6}}}$ soluzione u crescente. Se $y_0 > e^{\sqrt{\frac{5}{6}}}, \lim_{t \to +\infty} u(t) = +\infty$, mentre se $0 < y_0 < e^{\sqrt{\frac{5}{6}}} \lim_{t \to +\infty} u(t) = e^{-\sqrt{\frac{5}{6}}}$. Convessa se $y_0 > e^{\sqrt{\frac{5}{6}}}$; concava se $y_0 < e^{-\sqrt{\frac{5}{6}}}$; se $e^{-\sqrt{\frac{5}{6}}} < y_0 < e^{\sqrt{\frac{5}{6}}}$ esiste un punto di flesso $t_0 \in \mathbb{R}$ (con $u(t_0) = 1$), quindi concava per $t < t_0$ e convessa per $t > t_0$.
- 8. $y(t) = 3[1 + 3t + \frac{1}{2}\sin 2t].$

COMPITO 6

- 1. Parte di piano compresa fra l'ellisse di semiassi 1 e 7 ed il cerchio di raggio 1, centrati nell'origine, esclusi i bordi
- 2. (0,1/2) punto di minimo; se |x| < 1, (x,x^2) sono punti di massimo; se |x| > 1, (x,x^2) sono punti di minimo.
- 3. $\frac{13}{2}$
- 4. 30π
- 5. converge puntualmente (ma non uniformemente) a $f(x) \equiv 0$ in tutto \mathbb{R} : c'è convergenza uniforme nei sottoinsiemi limitati superiormente. Il limite vale 18π (l'integrale è l'area di un semicerchio).

- 6. raggio 2 indipendente da α , converge anche in ± 2 se $\alpha > 6$.
- 7. $\log\left(\log^2 y + \frac{1}{7}\right)$ è $C^1(\mathbb{R} \times \mathbb{R}^+)$ quindi esistenza ed unicità locali; per la sublinearità l'intervallo massimale di esistenza è illimitato a destra. $y_0 = e^{\pm\sqrt{\frac{6}{7}}}, \ u(t) \equiv e^{\pm\sqrt{\frac{6}{7}}}$ soluzioni stazionarie. Se $0 < y_0 < e^{-\sqrt{\frac{6}{7}}}$ o $y_0 > e^{\sqrt{\frac{6}{7}}}$ soluzione u crescente. Se $y_0 > e^{\sqrt{\frac{6}{7}}}, \lim_{t \to +\infty} u(t) = +\infty$, mentre se $0 < y_0 < e^{\sqrt{\frac{6}{7}}} \lim_{t \to +\infty} u(t) = e^{-\sqrt{\frac{6}{7}}}$. Convessa se $y_0 > e^{\sqrt{\frac{6}{7}}}$; concava se $y_0 < e^{-\sqrt{\frac{6}{7}}}$; se $e^{-\sqrt{\frac{6}{7}}} < y_0 < e^{\sqrt{\frac{6}{7}}}$ esiste un punto di flesso $t_0 \in \mathbb{R}$ (con $u(t_0) = 1$), quindi concava per $t < t_0$ e convessa per $t > t_0$.
- 8. $y(t) = 2[1 + 3t + \frac{1}{2}\sin 2t].$