Il numero del compito è il minimo valore di \(z \) nel dominio \(T \) del quarto esercizio. Ad esempio, se \(T = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 4, \ 1 \leq z \leq \sqrt{2}\} \), il numero del compito è 1.

COMPITO 1

1. \(\text{dom} f = \{(x, y) \in \mathbb{R}^2 : 2 \leq x^2 + y^2 < 4\} \)

2. \(m = 7^{-1/4} \text{ in } \pm(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \), \(M = 7^{1/4} \text{ in } \pm(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \)

3. \(A = \mathbb{R}^+ \times \mathbb{R}, \alpha = 8; \varphi(x, y) = \frac{\exp(x^2)}{8} \arctan y + x \log x - x \)

4. \(\frac{5}{4} \pi \)

5. la serie converge uniformemente in \([0, +\infty[\) a \(S(x) = -7x \)

6. \(t \sin(y - 2\pi) \) è di classe \(C^\infty \) in \(\mathbb{R}^2 \Rightarrow 3! \) sol. locale \(\forall y_0 \in \mathbb{R} \); sublineare, quindi esistenza globale su \(\mathbb{R} \). Sol. stazionarie: \(u = k\pi, \ k \in \mathbb{Z} \); soluzioni pari: \(y'' = \sin(y - 2\pi)(1 + t^2 \cos(y - 2\pi)) \).

Per \(y_0 \in [2\pi, 3\pi[\) soluzione u str. decresc. in \(-\infty, 0[\) e str. cresce. in \]0, +\infty[; per \(y_0 \in [3\pi, 4\pi[\)

soluzione u str. cresce. in \(-\infty, 0[\) e str. decresce. in \]0, +\infty[; \(y = 3\pi \) asint. orizz.; ogni soluzione (non stazionaria) presenta due punti di flesso, deducibili dal grafico

7. \(y(x) = \frac{1}{\sqrt[5]{\cos x}} \)

8. \(a_0 = \frac{6}{\pi}, \ a_1 = \frac{3}{\pi}, \ b_1 = 0, \ S(\frac{7}{2}) = \frac{3}{2} \)

COMPITO 2

1. \(\text{dom} f = \{(x, y) \in \mathbb{R}^2 : 5 \leq x^2 + y^2 < 9\} \)

2. \(m = 6^{-1/12} \text{ in } \pm(\frac{-\sqrt{3}}{2}, \frac{\sqrt{3}}{2}) \), \(M = 6^{1/12} \text{ in } \pm(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}) \)

3. \(A = \mathbb{R}^+ \times \mathbb{R}, \alpha = 7; \varphi(x, y) = \frac{\exp(x^2)}{7} \arctan y + x \log x - x \)

4. \(\frac{9}{4} \pi \)

5. la serie converge uniformemente in \([0, +\infty[\) a \(S(x) = -6x \)

6. \(t \sin(y - 3\pi) \) è di classe \(C^\infty \) in \(\mathbb{R}^2 \Rightarrow 3! \) sol. locale \(\forall y_0 \in \mathbb{R} \); sublineare, quindi esistenza globale su \(\mathbb{R} \). Sol. stazionarie: \(u = k\pi, \ k \in \mathbb{Z} \); soluzioni pari: \(y'' = \sin(y - 3\pi)(1 + t^2 \cos(y - 3\pi)) \).

Per \(y_0 \in [3\pi, 4\pi[\) soluzione u str. decresc. in \(-\infty, 0[\) e str. cresce. in \]0, +\infty[; per \(y_0 \in [4\pi, 5\pi[\)

soluzione u str. cresce. in \(-\infty, 0[\) e str. decresce. in \]0, +\infty[; \(y = 4\pi \) asint. orizz.; ogni soluzione (non stazionaria) presenta due punti di flesso, deducibili dal grafico

7. \(y(x) = \frac{1}{\sqrt[5]{\cos x}} \)

8. \(a_0 = \frac{10}{\pi}, \ a_1 = \frac{5}{\pi}, \ b_1 = 0, \ S(\frac{7}{2}) = \frac{5}{2} \)

COMPITO 3

1. \(\text{dom} f = \{(x, y) \in \mathbb{R}^2 : 10 \leq x^2 + y^2 < 16\} \)

2. \(m = 5^{-1/10} \text{ in } \pm(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{10}) \), \(M = 5^{1/10} \text{ in } \pm(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{10}) \)
3. \(A = \mathbb{R}^+ \times \mathbb{R}, \alpha = 6; \varphi(x, y) = \frac{\exp(x^6)}{6} \arctan y + x \log x - x \)

4. \(\frac{13}{4} \pi \)

5. la serie converge uniformemente in \([0, +\infty] \) a \(S(x) = -5x \)

6. \(t \sin(y - 4\pi) \) è di classe \(C^\infty \) in \(\mathbb{R}^2 \Rightarrow \exists! \) sol. locale \(\forall y_0 \in \mathbb{R} \); sublineare, quindi esistenza globale su \(\mathbb{R} \). Sol. stazionarie: \(u = k\pi, k \in \mathbb{Z} \); soluzioni pari; \(y'' = \sin(y - 4\pi)(1 + t^2 \cos(y - 4\pi)) \).
Per \(y_0 \in [4\pi, 5\pi] \) soluzione \(u \) str. decresc. in \(] - \infty, 0[\) e str. cresce. in \([0, +\infty[\); per \(y_0 \in [5\pi, 6\pi] \) soluzione \(u \) str. cresce. in \(] - \infty, 0[\) e str. decresce. in \([0, +\infty[\); \(y = 5\pi \) asint. orizz.; ogni soluzione (non stazionaria) presenta due punti di flesso, deducibili dal grafico

7. \(y(x) = \frac{1}{\sqrt{\cos x}} \)

8. \(a_0 = \frac{14}{\pi}, a_1 = \frac{7}{\pi}, b_1 = 0, S(\frac{\pi}{2}) = \frac{7}{2} \).

COMPITO 4

1. \(\text{dom} f = \{(x, y) \in \mathbb{R}^2 : 17 \leq x^2 + y^2 < 25 \} \)

2. \(m = 4^{-1/8} \) in \(\pm(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \), \(M = 4^{1/8} \) in \(\pm(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \)

3. \(A = \mathbb{R}^+ \times \mathbb{R}, \alpha = 5; \varphi(x, y) = \frac{\exp(x^5)}{5} \arctan y + x \log x - x \)

4. \(\frac{17}{4} \pi \)

5. la serie converge uniformemente in \([0, +\infty] \) a \(S(x) = -4x \)

6. \(t \sin(y - 5\pi) \) è di classe \(C^\infty \) in \(\mathbb{R}^2 \Rightarrow \exists! \) sol. locale \(\forall y_0 \in \mathbb{R} \); sublineare, quindi esistenza globale su \(\mathbb{R} \). Sol. stazionarie: \(u = k\pi, k \in \mathbb{Z} \); soluzioni pari; \(y'' = \sin(y - 5\pi)(1 + t^2 \cos(y - 5\pi)) \).
Per \(y_0 \in [5\pi, 6\pi] \) soluzione \(u \) str. decresc. in \(] - \infty, 0[\) e str. cresce. in \([0, +\infty[\); per \(y_0 \in [6\pi, 7\pi] \) soluzione \(u \) str. cresce. in \(] - \infty, 0[\) e str. decresce. in \([0, +\infty[\); \(y = 6\pi \) asint. orizz.; ogni soluzione (non stazionaria) presenta due punti di flesso, deducibili dal grafico

7. \(y(x) = \frac{1}{\sqrt{\cos x}} \)

8. \(a_0 = \frac{18}{\pi}, a_1 = \frac{9}{\pi}, b_1 = 0, S(\frac{\pi}{2}) = \frac{9}{2} \).

COMPITO 5

1. \(\text{dom} f = \{(x, y) \in \mathbb{R}^2 : 26 \leq x^2 + y^2 < 36 \} \)

2. \(m = 3^{-1/6} \) in \(\pm(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{6}) \), \(M = 3^{1/6} \) in \(\pm(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{6}) \)

3. \(A = \mathbb{R}^+ \times \mathbb{R}, \alpha = 4; \varphi(x, y) = \frac{\exp(x^4)}{4} \arctan y + x \log x - x \)

4. \(\frac{21}{4} \pi \)

5. la serie converge uniformemente in \([0, +\infty] \) a \(S(x) = -3x \)

6. \(t \sin(y - 6\pi) \) è di classe \(C^\infty \) in \(\mathbb{R}^2 \Rightarrow \exists! \) sol. locale \(\forall y_0 \in \mathbb{R} \); sublineare, quindi esistenza globale su \(\mathbb{R} \). Sol. stazionarie: \(u = k\pi, k \in \mathbb{Z} \); soluzioni pari; \(y'' = \sin(y - 6\pi)(1 + t^2 \cos(y - 6\pi)) \).
Per \(y_0 \in [6\pi, 7\pi] \) soluzione \(u \) str. decresc. in \(] - \infty, 0[\) e str. cresce. in \([0, +\infty[\); per \(y_0 \in [7\pi, 8\pi] \) soluzione \(u \) str. cresce. in \(] - \infty, 0[\) e str. decresce. in \([0, +\infty[\); \(y = 7\pi \) asint. orizz.; ogni soluzione (non stazionaria) presenta due punti di flesso, deducibili dal grafico
7. \[y(x) = \frac{1}{\sqrt{1 + \cos x}} \]

8. \[a_0 = \frac{22}{\pi}, \ a_1 = \frac{11}{\pi}, \ b_1 = 0, \ S(\frac{\pi}{2}) = \frac{11}{2}. \]

COMPITO 6

1. \[\text{dom} f = \{(x, y) \in \mathbb{R}^2 : 37 \leq x^2 + y^2 < 49\} \]

2. \[m = 2^{-1/4} \text{ in } \pm(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), \ M = 2^{1/4} \text{ in } \pm(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \]

3. \[A = \mathbb{R}^+ \times \mathbb{R}, \ \alpha = 3; \ \varphi(x, y) = \frac{\exp(x^3)}{3} \arctan y + x \log x - x \]

4. \[\frac{26}{\pi} \]

5. la serie converge uniformemente in \([0, +\infty]\) a \(S(x) = -2x\)

6. \[t \sin(y - 7\pi) \text{ è di classe } C^\infty \text{ in } \mathbb{R}^2 \Rightarrow \exists! \text{ sol. locale } \forall y_0 \in \mathbb{R}; \text{ sublineare, quindi esistenza globale su } \mathbb{R}. \]

Sol. stazionarie: \(u = k\pi, \ k \in \mathbb{Z}\); soluzioni pari; \(y'' = \sin(y - 7\pi)(1 + t^2 \cos(y - 7\pi))\).

Per \(y_0 \in]7\pi, 8\pi[\) soluzione \(u\) str. decresc. in \(-\infty, 0[\) e str. cresc. in \(0, +\infty[\); per \(y_0 \in]8\pi, 9\pi[\) soluzione \(u\) str. cresc. in \(-\infty, 0[\) e str. decresc. in \(0, +\infty[\); \(y = 8\pi\) asint. orizz.; ogni soluzione (non stazionaria) presenta due punti di flesso, deducibili dal grafico

7. \[y(x) = \frac{1}{\sqrt{13 \cos x}} \]

8. \[a_0 = \frac{26}{\pi}, \ a_1 = \frac{13}{\pi}, \ b_1 = 0, \ S(\frac{\pi}{2}) = \frac{13}{2}. \]