Il numero del compito è dato dall'intero sottratto a β nell'esercizio 6.

COMPITO 1

- 1. f è continua in (0,0); $\frac{\partial f}{\partial u}(0,0) = 0$, ma $\frac{\partial f}{\partial x}(0,0)$ non esiste, quindi non è differenziabile in (0,0).
- 2. (0,0), (-1,0), (1,0) sono gli unici punti stazionari e sono tutti punti di sella.
- 3. 1/2
- 4. 2
- 5. Per $\alpha < 0$ f_n converge puntualmente ed uniformemente a f(x) = 0 in I = [0, 7]; per $\alpha = 0$ f_n converge (solo) puntualmente in I = [0, 7] a f(x) = 0 per $0 \le x < 7$, f(7) = 1 e converge uniformemente in ogni intervallo [0, b] con 0 < b < 7; per $\alpha > 0$ f_n converge (solo) puntualmente in I = [0, 7] a f(x) = 0 e converge uniformemente in ogni intervallo [0, b] con 0 < b < 7.
- 6. raggio 7 se $\beta = 1$ (e converge uniformemente in [0, b] con 0 < b < 14), ∞ se $\beta > 1$, 0 se $\beta < 1$. Ponendo $t = \frac{x-7}{7}$, applicando, ad esempio, il teorema di integrazione per serie $s(t) = e^t 1$.
- 7. $a_0 = 3\left(1 \frac{2}{\pi}\right), \ a_1 = 3\left(\frac{2}{\pi} \frac{1}{2}\right), \ b_1 = 0, \ S\left(\frac{5}{2}\pi\right) = \frac{3}{2}.$
- 8. $f(t,y) = \frac{1}{y^2+2}$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità locali e globali. Non ci sono soluzioni stazionarie. Le soluzioni u sono sempre monotone crescenti, concave per $t > t^*$ (con $u(t^*) = 0$) convesse per $t < t^*$. Poiché l'intervallo massimale di esistenza è tutto \mathbb{R} , non ci sono asintoti verticali. Poiché $\lim_{t\to\pm\infty} u(t) = \pm\infty$ non ci sono asintoti orizzontali. Non ci sono nemmeno asintoti obliqui, perché $\lim_{t\to\pm\infty} u(t)/t = \lim_{t\to\pm\infty} u'(t) = 0$ (comportamento deducibile anche dalla concavità).

COMPITO 2

- 1. f è continua in (0,0); $\frac{\partial f}{\partial y}(0,0) = 0$, ma $\frac{\partial f}{\partial x}(0,0)$ non esiste, quindi non è differenziabile in (0,0).
- 2. (0,0), (-1,0), (1,0) sono gli unici punti stazionari e sono tutti punti di sella.
- 3. 1/3
- 4. 3
- 5. Per $\alpha < 0$ f_n converge puntualmente ed uniformemente a f(x) = 0 in I = [0, 6]; per $\alpha = 0$ f_n converge (solo) puntualmente in I = [0, 6] a f(x) = 0 per $0 \le x < 6$, f(6) = 1 e converge uniformemente in ogni intervallo [0, b] con 0 < b < 6; per $\alpha > 0$ f_n converge (solo) puntualmente in I = [0, 6[a f(x) = 0 e converge uniformemente in ogni intervallo [0, b] con 0 < b < 6.
- 6. raggio 6 se $\beta = 2$ (e converge uniformemente in [0, b] con 0 < b < 12), ∞ se $\beta > 2$, 0 se $\beta < 2$. Ponendo $t = \frac{x-6}{6}$, applicando, ad esempio, il teorema di integrazione per serie $s(t) = e^t 1$.
- 7. $a_0 = 5\left(1 \frac{2}{\pi}\right), \ a_1 = 5\left(\frac{2}{\pi} \frac{1}{2}\right), \ b_1 = 0, \ S\left(\frac{5}{2}\pi\right) = \frac{5}{2}.$
- 8. $f(t,y) = \frac{1}{y^2+3}$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità locali e globali. Non ci sono soluzioni stazionarie. Le soluzioni u sono sempre monotone crescenti, concave per $t > t^*$ (con $u(t^*) = 0$) convesse per $t < t^*$. Poiché l'intervallo massimale di esistenza è tutto \mathbb{R} , non ci sono asintoti verticali. Poiché $\lim_{t\to\pm\infty} u(t) = \pm\infty$ non ci sono asintoti orizzontali. Non ci sono nemmeno asintoti obliqui, perché $\lim_{t\to\pm\infty} u(t)/t = \lim_{t\to\pm\infty} u'(t) = 0$ (comportamento deducibile anche dalla concavità).

COMPITO 3

- 1. f è continua in (0,0); $\frac{\partial f}{\partial u}(0,0) = 0$, ma $\frac{\partial f}{\partial x}(0,0)$ non esiste, quindi non è differenziabile in (0,0).
- 2. (0,0), (-1,0), (1,0) sono gli unici punti stazionari e sono tutti punti di sella.
- 3. 1/4
- 4. 4
- 5. Per $\alpha < 0$ f_n converge puntualmente ed uniformemente a f(x) = 0 in I = [0, 5]; per $\alpha = 0$ f_n converge (solo) puntualmente in I = [0, 5] a f(x) = 0 per $0 \le x < 5$, f(5) = 1 e converge uniformemente in ogni intervallo [0, b] con 0 < b < 5; per $\alpha > 0$ f_n converge (solo) puntualmente in I = [0, 5] a f(x) = 0 e converge uniformemente in ogni intervallo [0, b] con 0 < b < 5.
- 6. raggio 5 se $\beta = 3$ (e converge uniformemente in [0, b] con 0 < b < 10), ∞ se $\beta > 3$, 0 se $\beta < 3$. Ponendo $t = \frac{x-5}{5}$, applicando, ad esempio, il teorema di integrazione per serie $s(t) = e^t 1$.
- 7. $a_0 = 7\left(1 \frac{2}{\pi}\right), \ a_1 = 7\left(\frac{2}{\pi} \frac{1}{2}\right), \ b_1 = 0, \ S\left(\frac{5}{2}\pi\right) = \frac{7}{2}.$
- 8. $f(t,y) = \frac{1}{y^2+4}$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità locali e globali. Non ci sono soluzioni stazionarie. Le soluzioni u sono sempre monotone crescenti, concave per $t > t^*$ (con $u(t^*) = 0$) convesse per $t < t^*$. Poiché l'intervallo massimale di esistenza è tutto \mathbb{R} , non ci sono asintoti verticali. Poiché $\lim_{t\to\pm\infty} u(t) = \pm\infty$ non ci sono asintoti orizzontali. Non ci sono nemmeno asintoti obliqui, perché $\lim_{t\to\pm\infty} u(t)/t = \lim_{t\to\pm\infty} u'(t) = 0$ (comportamento deducibile anche dalla concavità).

COMPITO 4

- 1. f è continua in (0,0); $\frac{\partial f}{\partial u}(0,0) = 0$, ma $\frac{\partial f}{\partial x}(0,0)$ non esiste, quindi non è differenziabile in (0,0).
- 2. (0,0), (-1,0), (1,0) sono gli unici punti stazionari e sono tutti punti di sella.
- 3. 1/5
- 4. 5
- 5. Per $\alpha < 0$ f_n converge puntualmente ed uniformemente a f(x) = 0 in I = [0,4]; per $\alpha = 0$ f_n converge (solo) puntualmente in I = [0,4] a f(x) = 0 per $0 \le x < 4$, f(4) = 1 e converge uniformemente in ogni intervallo [0,b] con 0 < b < 4; per $\alpha > 0$ f_n converge (solo) puntualmente in I = [0,4[a f(x) = 0 e converge uniformemente in ogni intervallo [0,b] con 0 < b < 4.
- 6. raggio 4 se $\beta = 4$ (e converge uniformemente in [0,b] con 0 < b < 8), ∞ se $\beta > 4$, 0 se $\beta < 4$. Ponendo $t = \frac{x-4}{4}$, applicando, ad esempio, il teorema di integrazione per serie $s(t) = e^t 1$.
- 7. $a_0 = 9\left(1 \frac{2}{\pi}\right), \ a_1 = 9\left(\frac{2}{\pi} \frac{1}{2}\right), \ b_1 = 0, \ S\left(\frac{5}{2}\pi\right) = \frac{9}{2}.$
- 8. $f(t,y)=\frac{1}{y^2+5}$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità locali e globali. Non ci sono soluzioni stazionarie. Le soluzioni u sono sempre monotone crescenti, concave per $t>t^*$ (con $u(t^*)=0$) convesse per $t< t^*$. Poiché l'intervallo massimale di esistenza è tutto \mathbb{R} , non ci sono asintoti verticali. Poiché $\lim_{t\to\pm\infty}u(t)=\pm\infty$ non ci sono asintoti orizzontali. Non ci sono nemmeno asintoti obliqui, perché $\lim_{t\to\pm\infty}u(t)/t=\lim_{t\to\pm\infty}u'(t)=0$ (comportamento deducibile anche dalla concavità).

- 1. f è continua in (0,0); $\frac{\partial f}{\partial y}(0,0) = 0$, ma $\frac{\partial f}{\partial x}(0,0)$ non esiste, quindi non è differenziabile in (0,0).
- 2. (0,0), (-1,0), (1,0) sono gli unici punti stazionari e sono tutti punti di sella.
- 3. 1/6
- 4. 6
- 5. Per $\alpha < 0$ f_n converge puntualmente ed uniformemente a f(x) = 0 in I = [0,3]; per $\alpha = 0$ f_n converge (solo) puntualmente in I = [0,3] a f(x) = 0 per $0 \le x < 3$, f(3) = 1 e converge uniformemente in ogni intervallo [0,b] con 0 < b < 3; per $\alpha > 0$ f_n converge (solo) puntualmente in I = [0,3[a f(x) = 0 e converge uniformemente in ogni intervallo [0,b] con 0 < b < 3.
- 6. raggio 3 se $\beta = 5$ (e converge uniformemente in [0, b] con 0 < b < 6), ∞ se $\beta > 5$, 0 se $\beta < 5$. Ponendo $t = \frac{x-3}{3}$, applicando, ad esempio, il teorema di integrazione per serie $s(t) = e^t 1$.
- 7. $a_0 = 11\left(1 \frac{2}{\pi}\right), \ a_1 = 11\left(\frac{2}{\pi} \frac{1}{2}\right), \ b_1 = 0, \ S\left(\frac{5}{2}\pi\right) = \frac{11}{2}.$
- 8. $f(t,y) = \frac{1}{y^2+6}$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità locali e globali. Non ci sono soluzioni stazionarie. Le soluzioni u sono sempre monotone crescenti, concave per $t > t^*$ (con $u(t^*) = 0$) convesse per $t < t^*$. Poiché l'intervallo massimale di esistenza è tutto \mathbb{R} , non ci sono asintoti verticali. Poiché $\lim_{t\to\pm\infty} u(t) = \pm\infty$ non ci sono asintoti orizzontali. Non ci sono nemmeno asintoti obliqui, perché $\lim_{t\to\pm\infty} u(t)/t = \lim_{t\to\pm\infty} u'(t) = 0$ (comportamento deducibile anche dalla concavità).

COMPITO 6

- 1. f è continua in (0,0); $\frac{\partial f}{\partial u}(0,0) = 0$, ma $\frac{\partial f}{\partial x}(0,0)$ non esiste, quindi non è differenziabile in (0,0).
- 2. (0,0), (-1,0), (1,0) sono gli unici punti stazionari e sono tutti punti di sella.
- 3. 1/7
- 4. 7
- 5. Per $\alpha < 0$ f_n converge puntualmente ed uniformemente a f(x) = 0 in I = [0, 2]; per $\alpha = 0$ f_n converge (solo) puntualmente in I = [0, 2] a f(x) = 0 per $0 \le x < 2$, f(2) = 1 e converge uniformemente in ogni intervallo [0, b] con 0 < b < 2; per $\alpha > 0$ f_n converge (solo) puntualmente in I = [0, 2[a f(x) = 0 e converge uniformemente in ogni intervallo [0, b] con 0 < b < 2.
- 6. raggio 2 se $\beta = 6$ (e converge uniformemente in [0, b] con 0 < b < 4), ∞ se $\beta > 6$, 0 se $\beta < 6$. Ponendo $t = \frac{x-2}{2}$, applicando, ad esempio, il teorema di integrazione per serie $s(t) = e^t 1$.
- 7. $a_0 = 13\left(1 \frac{2}{\pi}\right), \ a_1 = 13\left(\frac{2}{\pi} \frac{1}{2}\right), \ b_1 = 0, \ S\left(\frac{5}{2}\pi\right) = \frac{13}{2}.$
- 8. $f(t,y) = \frac{1}{y^2+7}$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità locali e globali. Non ci sono soluzioni stazionarie. Le soluzioni u sono sempre monotone crescenti, concave per $t > t^*$ (con $u(t^*) = 0$) convesse per $t < t^*$. Poiché l'intervallo massimale di esistenza è tutto \mathbb{R} , non ci sono asintoti verticali. Poiché $\lim_{t\to\pm\infty} u(t) = \pm\infty$ non ci sono asintoti orizzontali. Non ci sono nemmeno asintoti obliqui, perché $\lim_{t\to\pm\infty} u(t)/t = \lim_{t\to\pm\infty} u'(t) = 0$ (comportamento deducibile anche dalla concavità).