Il numero del compito è dato dall'intero sottratto ad α nell'esercizio 2.

Fila 1

- 1. $\{f_n\}$ converge puntualmente (ma non uniformemente) in $I = [0, +\infty[$ a f con f(x) = 0 se x > 0 e f(0) = 1/4. Converge uniformemente in ogni insieme $[a, +\infty[$ (con a > 0).
- 2. R = 0 se $\alpha > 1$, $R = \infty$ se $\alpha < 1$; R = 1, se $\alpha = 1$, converge in x = 1 (mediante il criterio di Leibniz) e diverge in x = -1 (quindi convergenza uniforme in [-M, 1] con 0 < M < 1) per il teorema di Abel) e la somma è $\log(1 + x) x$
- 3. La serie è a termini positivi. In x=0 la serie non converge. Usando. ad esempio, il criterio del contronto asintotico, la serie converge puntualmente in $]0, +\infty[$, se $\beta > 2$ (se $\beta \leq 2$ la serie diverge positivamente). Per $\beta > 2$ la serie converge totalmente solo in $[a, +\infty[$ con a > 0, poiché $1/\sqrt{2 + n^{\beta}x} \leq 1/\sqrt{2 + n^{\beta}a}$ per ogni $x \in [a, +\infty[$.
- 4. $a_0 = 4\pi$, $a_n = 0$ per ogni $n \in \mathbb{Z}^+$, $b_n = (-1)^{n+1} \frac{4}{n}$. Non converge uniformemente in tutto \mathbb{R} perché è discontinua; converge puntualmente in tutto \mathbb{R} perché è continua a tratti. $S(2\pi) = 2\pi$, $S(3\pi) = 2\pi$.
- 5. $f(t,y) = \log(1+y^2) + \arctan(\log(1+y^2))$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità globali; u = 0 soluzione stazionaria; se $y_0 \neq 0$, soluzione u crescente. Se $y_0 < 0$, la soluzione u è concava; se $y_0 > 0$, u è convessa. Se $y_0 < 0$, $\lim_{t \to +\infty} u(t) = 0$ e u = 0 è asintoto orizzontale per $t \to +\infty$; se $y_0 > 0$, $\lim_{t \to -\infty} u(t) = 0$ e u = 0 è asintoto orizzontale per $t \to -\infty$.

Fila 2

- 1. $\{f_n\}$ converge puntualmente (ma non uniformemente) in $I = [0, +\infty[$ a f con f(x) = 0 se x > 0 e f(0) = 1/6. Converge uniformemente in ogni insieme $[a, +\infty[$ (con a > 0).
- 2. R = 0 se $\alpha > 2$, $R = \infty$ se $\alpha < 2$; R = 1, se $\alpha = 2$, converge in x = 1 (mediante il criterio di Leibniz) e diverge in x = -1 (quindi convergenza uniforme in [-M, 1] con 0 < M < 1) per il teorema di Abel) e la somma è $\log(1 + x) x$
- 3. La serie è a termini positivi. In x=0 la serie non converge. Usando. ad esempio, il criterio del contronto asintotico, la serie converge puntualmente in $]0,+\infty[$, se $\beta>2$ (se $\beta\leq 2$ la serie diverge positivamente). Per $\beta>2$ la serie converge totalmente solo in $[a,+\infty[$ con a>0, poiché $1/\sqrt{3+n^{\beta}x}\leq 1/\sqrt{3+n^{\beta}a}$ per ogni $x\in[a,+\infty[$.
- 4. $a_0 = 6\pi$, $a_n = 0$ per ogni $n \in \mathbb{Z}^+$, $b_n = (-1)^{n+1} \frac{6}{n}$. Non converge uniformemente in tutto \mathbb{R} perché è discontinua; converge puntualmente in tutto \mathbb{R} perché è continua a tratti. $S(4\pi) = 3\pi$, $S(5\pi) = 3\pi$.
- 5. $f(t,y) = \log(1+y^2) + \arctan(\log(1+y^2))$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità globali; u=0 soluzione stazionaria; se $y_0 \neq 0$, soluzione u crescente. Se $y_0 < 0$, la soluzione u è concava; se $y_0 > 0$, u è convessa. Se $y_0 < 0$, $\lim_{t \to +\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to +\infty$; se $y_0 > 0$, $\lim_{t \to -\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to -\infty$.

- 1. $\{f_n\}$ converge puntualmente (ma non uniformemente) in $I = [0, +\infty[$ a f con f(x) = 0 se x > 0 e f(0) = 1/8. Converge uniformemente in ogni insieme $[a, +\infty[$ (con a > 0).
- 2. R = 0 se $\alpha > 3$, $R = \infty$ se $\alpha < 3$; R = 1, se $\alpha = 3$, converge in x = 1 (mediante il criterio di Leibniz) e diverge in x = -1 (quindi convergenza uniforme in [-M, 1] con 0 < M < 1) per il teorema di Abel) e la somma è $\log(1 + x) x$
- 3. La serie è a termini positivi. In x=0 la serie non converge. Usando. ad esempio, il criterio del contronto asintotico, la serie converge puntualmente in $]0,+\infty[$, se $\beta>2$ (se $\beta\leq 2$ la serie diverge positivamente). Per $\beta>2$ la serie converge totalmente solo in $[a,+\infty[$ con a>0, poiché $1/\sqrt{4+n^{\beta}x}\leq 1/\sqrt{4+n^{\beta}a}$ per ogni $x\in[a,+\infty[$.
- 4. $a_0 = 8\pi$, $a_n = 0$ per ogni $n \in \mathbb{Z}^+$, $b_n = (-1)^{n+1} \frac{8}{n}$. Non converge uniformemente in tutto \mathbb{R} perché è discontinua; converge puntualmente in tutto \mathbb{R} perché è continua a tratti. $S(6\pi) = 4\pi$, $S(7\pi) = 4\pi$.
- 5. $f(t,y) = \log(1+y^2) + \arctan(\log(1+y^2))$ è $C^1(\mathbb{R}^2)$ e sublineare, quindi esistenza ed unicità globali; u=0 soluzione stazionaria; se $y_0 \neq 0$, soluzione u crescente. Se $y_0 < 0$, la soluzione u è concava; se $y_0 > 0$, u è convessa. Se $y_0 < 0$, $\lim_{t \to +\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to +\infty$; se $y_0 > 0$, $\lim_{t \to -\infty} u(t) = 0$ e u=0 è asintoto orizzontale per $t \to -\infty$.